Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lan S. Chen is active.

Publication


Featured researches published by Lan S. Chen.


Circulation | 2000

Relationship Between Regional Cardiac Hyperinnervation and Ventricular Arrhythmia

Ji Min Cao; Michael C. Fishbein; Jay B. Han; William W. Lai; Angela C. Lai; Tsu Juey Wu; L. Czer; Paul L. Wolf; Timothy A. Denton; I. Peter Shintaku; Peng Sheng Chen; Lan S. Chen

BACKGROUND Sympathetic nerve activity is known to be important in ventricular arrhythmogenesis, but there is little information on the relation between the distribution of cardiac sympathetic nerves and the occurrence of spontaneous ventricular arrhythmias in humans. METHODS AND RESULTS We studied 53 native hearts of transplant recipients, 5 hearts obtained at autopsy of patients who died of noncardiac causes, and 7 ventricular tissues that had been surgically resected from the origin of ventricular tachycardia. The history was reviewed to determine the presence (group 1A) or absence (group 1B) of spontaneous ventricular arrhythmias. Immunocytochemical staining for S100 protein, neurofilament protein, tyrosine hydroxylase, and protein gene product 9.5 was performed to study the distribution and the density of sympathetic nerves. The average left ventricular ejection fraction was 0.22+/-0.07. A total of 30 patients had documented ventricular arrhythmias, including ventricular tachycardia and sudden cardiac death. A regional increase in sympathetic nerves was observed around the diseased myocardium and blood vessels in all 30 hearts. The density of nerve fibers as determined morphometrically was significantly higher in group 1A patients (total nerve number 19.6+/-11.2/mm(2), total nerve length 3.3+/-3.0 mm/mm(2)) than in group 1B patients (total nerve number 13.5+/-6.1/mm(2), total nerve length 2.0+/-1.1 mm/mm(2), P<0. 05 and P<0.01, respectively). CONCLUSIONS There is an association between a history of spontaneous ventricular arrhythmia and an increased density of sympathetic nerves in patients with severe heart failure. These findings suggest that abnormally increased postinjury sympathetic nerve density may be in part responsible for the occurrence of ventricular arrhythmia and sudden cardiac death in these patients.


Circulation Research | 2000

Nerve Sprouting and Sudden Cardiac Death

Ji Min Cao; Lan S. Chen; Bruce H. Kenknight; Toshihiko Ohara; Moon Hyoung Lee; Jerome Tsai; William W. Lai; Hrayr S. Karagueuzian; Paul L. Wolf; Michael C. Fishbein; Peng Sheng Chen

The factors that contribute to the occurrence of sudden cardiac death (SCD) in patients with chronic myocardial infarction (MI) are not entirely clear. The present study tests the hypothesis that augmented sympathetic nerve regeneration (nerve sprouting) increases the probability of ventricular tachycardia (VT), ventricular fibrillation (VF), and SCD in chronic MI. In dogs with MI and complete atrioventricular (AV) block, we induced cardiac sympathetic nerve sprouting by infusing nerve growth factor (NGF) to the left stellate ganglion (experimental group, n=9). Another 6 dogs with MI and complete AV block but without NGF infusion served as controls (n=6). Immunocytochemical staining revealed a greater magnitude of sympathetic nerve sprouting in the experimental group than in the control group. After MI, all dogs showed spontaneous VT that persisted for 5.8+/-2.0 days (phase 1 VT). Spontaneous VT reappeared 13.1+/-6.0 days after surgery (phase 2 VT). The frequency of phase 2 VT was 10-fold higher in the experimental group (2.0+/-2.0/d) than in the control group (0.2+/-0.2/d, P<0.05). Four dogs in the experimental group but none in the control group died suddenly of spontaneous VF. We conclude that MI results in sympathetic nerve sprouting. NGF infusion to the left stellate ganglion in dogs with chronic MI and AV block augments sympathetic nerve sprouting and creates a high-yield model of spontaneous VT, VF, and SCD. The magnitude of sympathetic nerve sprouting may be an important determinant of SCD in chronic MI.


Cardiovascular Research | 2001

Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death

Peng Sheng Chen; Lan S. Chen; Ji Min Cao; Behrooz G. Sharifi; Hrayr S. Karagueuzian; Michael C. Fishbein

The purpose of this article is to review the nerve sprouting hypothesis of sudden cardiac death. It is known that sympathetic stimulation is important in the generation of sudden cardiac death. For example, there is a diurnal variation of sudden death rate in patients with myocardial infarction. Beta blockers, or drugs with beta blocking effects, are known to prevent sudden cardiac death. It was unclear if the cardiac nerves in the heart play only a passive role in the mechanisms of sudden death. To determine if nerve sprouting and neural remodeling occur after myocardial infarction, we performed immunocytochemical studies of cardiac nerves in explanted native hearts of transplant recipients. We found that there was a positive correlation between nerve density and a clinical history of ventricular arrhythmia. Encouraged by these results, we performed a study in dogs to determine whether or not nerve growth factor (NGF) infusion to the left stellate ganglion can facilitate the development of ventricular tachycardia (VT), ventricular fibrillation (VF), and sudden cardiac death (SCD). The results showed that augmented myocardial sympathetic nerve sprouting through NGF infusion plus atrioventricular (AV) block and MI result in a 44% incidence (four of nine dogs) of SCD and a high incidence of VT in the chronic phase of MI. In contrast, none of the six dogs (with AV block and MI) without NGF infusion died suddenly or had frequent VT episodes. Based on these findings, we propose the nerve sprouting hypothesis of ventricular arrhythmia and SCD. The hypothesis states that MI results in nerve injury, followed by sympathetic nerve sprouting and regional (heterogeneous) myocardial hyperinnervation. The coupling between augmented sympathetic nerve sprouting with electrically remodeled myocardium results in VT, VF and SCD. Modification of nerve sprouting after MI may provide a novel opportunity for arrhythmia control.


Circulation Research | 2004

Mechanisms of Cardiac Nerve Sprouting After Myocardial Infarction in Dogs

Shengmei Zhou; Lan S. Chen; Yasushi Miyauchi; Mizuho Miyauchi; Saibal Kar; Simon Kangavari; Michael C. Fishbein; Behrooz G. Sharifi; Peng Sheng Chen

Cardiac nerve sprouting and sympathetic hyperinnervation after myocardial infarction (MI) both contribute to arrhythmogenesis and sudden death. However, the mechanisms responsible for nerve sprouting after MI are unclear. The expression of nerve growth factor (NGF), growth associated protein 43 (GAP43), and other nerve markers were studied at the infarcted site, the noninfarcted left ventricle free wall (LVFW), and the left stellate ganglion (LSG) at several time points (30 minutes to 1 month) after MI. Transcardiac (difference between coronary sinus and aorta) NGF levels were also assayed. Acute MI resulted in the immediate elevation of the transcardiac NGF concentration within 3.5 hours after MI, followed by the upregulation of cardiac NGF and GAP43 expression, which was earlier and more pronounced at the infarcted site than the noninfarcted LVFW. However, cardiac nerve sprouting and sympathetic hyperinnervation were more pronounced in the noninfarcted than the infarcted LVFW site and peaked at 1 week after MI. The NGF and GAP43 protein levels significantly increased in the LSG from 3 days (P <0.01 for all) after MI, without a concomitant increase in mRNA. There was persistent elevation of NGF levels in aorta and coronary sinus within 1 month after MI. We conclude MI results in immediate local NGF release, followed by upregulation of NGF and GAP43 expression at the infarcted site. NGF and GAP43 are transported retrogradely to LSG, which triggers nerve sprouting at the noninfarcted LVFW. A rapid and persistent upregulation of NGF and GAP43 expression at the infarcted site underlies the mechanisms of cardiac nerve sprouting after MI.


Circulation | 2008

Neural Mechanisms of Paroxysmal Atrial Fibrillation and Paroxysmal Atrial Tachycardia in Ambulatory Canines

Alex Y. Tan; Shengmei Zhou; Masahiro Ogawa; Juan Song; Matthew Chu; Hongmei Li; Michael C. Fishbein; Shien Fong Lin; Lan S. Chen; Peng Sheng Chen

Background— The relationship between autonomic activation and the mechanisms of paroxysmal atrial fibrillation remains unclear. Methods and Results— We implanted a pacemaker and a radio transmitter in 7 dogs (group 1). After baseline recording, we paced the left atrium at 20 Hz for 1 week and then monitored left stellate ganglion nerve activity, left vagal nerve activity, and left atrial electrogram without pacing for 24 hours. This protocol repeated itself until sustained atrial fibrillation (>48 hours) was induced in 3±1 weeks. In another 6 dogs (group 2), we cryoablated left and right stellate ganglia and the cardiac branch of the left vagal nerve during the first surgery and then repeated the same pacing protocol until sustained atrial fibrillation was induced in 7±4 weeks (P=0.01). There were 4±2 episodes of paroxysmal atrial fibrillation per day and 10±3 episodes of paroxysmal atrial tachycardia per day in group 1. Simultaneous sympathovagal discharges were observed to immediately precede the onset of atrial arrhythmias in 73% of episodes. In comparison, group 2 dogs had no paroxysmal atrial fibrillation (P=0.046) or paroxysmal atrial tachycardia (P<0.001) episodes. Nerve sprouting, sympathetic hyperinnervation, and a massive elevation of transcardiac norepinephrine levels occurred in both groups. Conclusions— Intermittent rapid left atrial pacing results in sympathetic hyperinnervation, paroxysmal atrial fibrillation, and paroxysmal atrial tachycardia. Simultaneous sympathovagal discharges are common triggers of these arrhythmias. Cryoablation of extrinsic sympathovagal nerves eliminated paroxysmal atrial fibrillation and paroxysmal atrial tachycardia, which suggests that simultaneous sympathovagal discharges and these arrhythmias are causally related. Because cryoablation only delayed but did not prevent sustained atrial fibrillation, autonomic nerve activity is not the only factor that determines atrial fibrillation maintenance.


Circulation Research | 2014

Role of the Autonomic Nervous System in Atrial Fibrillation: Pathophysiology and Therapy

Peng Sheng Chen; Lan S. Chen; Michael C. Fishbein; Shien Fong Lin; Stanley Nattel

Autonomic nervous system activation can induce significant and heterogeneous changes of atrial electrophysiology and induce atrial tachyarrhythmias, including atrial tachycardia and atrial fibrillation (AF). The importance of the autonomic nervous system in atrial arrhythmogenesis is also supported by circadian variation in the incidence of symptomatic AF in humans. Methods that reduce autonomic innervation or outflow have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. In this review, we focus on the relationship between the autonomic nervous system and the pathophysiology of AF and the potential benefit and limitations of neuromodulation in the management of this arrhythmia. We conclude that autonomic nerve activity plays an important role in the initiation and maintenance of AF, and modulating autonomic nerve function may contribute to AF control. Potential therapeutic applications include ganglionated plexus ablation, renal sympathetic denervation, cervical vagal nerve stimulation, baroreflex stimulation, cutaneous stimulation, novel drug approaches, and biological therapies. Although the role of the autonomic nervous system has long been recognized, new science and new technologies promise exciting prospects for the future.


Circulation | 2001

Nerve Sprouting and Sympathetic Hyperinnervation in a Canine Model of Atrial Fibrillation Produced by Prolonged Right Atrial Pacing

Che Ming Chang; Tsu Juey Wu; Shengmei Zhou; Rahul N. Doshi; Moon Hyoung Lee; Toshihiko Ohara; Michael C. Fishbein; Hrayr S. Karagueuzian; Peng Sheng Chen; Lan S. Chen

Background—Long-term rapid atrial pacing may result in atrial fibrillation (AF) in dogs. Whether there is histological evidence for neural remodeling is unclear. Method and Results—We performed rapid right atrial pacing in 6 dogs for 111±76 days to induce sustained AF. Tissues from 6 healthy dogs were used as controls. Immunocytochemical staining of cardiac nerves was performed using anti–growth-associated protein 43 (GAP43) and anti–tyrosine hydroxylase (TH) antibodies. In dogs with AF, the density of GAP43-positive and TH-positive nerves in the right atrium was 470±406 and 231±126 per mm2, respectively, which was significantly (P <0.001) higher than the nerve density in control tissues (25±32 and 88±40 per mm2, respectively). The density of GAP43-positive and TH-positive nerves in the atrial septum was 317±36 and 155±85 per mm2, respectively, and was significantly (P <0.001) higher than the nerve density in control tissues (9±13 and 30±7 per mm2, respectively). Similarly, the density of GAP43-positive and TH-positive nerves in the left atrium of dogs with AF was 119±61 and 91±40 per mm2, respectively, which was significantly (P <0.001) higher than the nerve density in control tissues (10±15 and 38±39 per mm2, respectively). Furthermore, in dogs with AF, the right atrium had a significantly higher nerve density than the left atrium. Microscopic examinations revealed an inhomogeneous distribution of cardiac nerves within each sampling site. Conclusions—Significant nerve sprouting and sympathetic hyperinnervation are present in a canine model of sustained AF produced by prolonged right atrial pacing. The magnitude of nerve sprouting and hyperinnervation was higher in the right atrium than in the left atrium.


Circulation | 2011

Continuous Low-Level Vagus Nerve Stimulation Reduces Stellate Ganglion Nerve Activity and Paroxysmal Atrial Tachyarrhythmias in Ambulatory Canines

Mark J. Shen; Tetsuji Shinohara; Hyung Wook Park; Kyle Frick; Daniel S. Ice; Eue-Keun Choi; Seongwook Han; Mitsunori Maruyama; Rahul Sharma; Changyu Shen; Michael C. Fishbein; Lan S. Chen; John C. Lopshire; Douglas P. Zipes; Shien Fong Lin; Peng Sheng Chen

Background— We hypothesize that left-sided low-level vagus nerve stimulation (LL-VNS) can suppress sympathetic outflow and reduce atrial tachyarrhythmias in ambulatory dogs. Methods and Results— We implanted a neurostimulator in 12 dogs to stimulate the left cervical vagus nerve and a radiotransmitter for continuous recording of left stellate ganglion nerve activity, vagal nerve activities, and ECGs. Group 1 dogs (N=6) underwent 1 week of continuous LL-VNS. Group 2 dogs (N=6) underwent intermittent rapid atrial pacing followed by active or sham LL-VNS on alternate weeks. Integrated stellate ganglion nerve activity was significantly reduced during LL-VNS (7.8 mV/s; 95% confidence interval [CI] 6.94 to 8.66 versus 9.4 mV/s [95% CI, 8.5 to 10.3] at baseline; P=0.033) in group 1. The reduction was most apparent at 8 AM, along with a significantly reduced heart rate (P=0.008). Left-sided low-level vagus nerve stimulation did not change vagal nerve activity. The density of tyrosine hydroxylase–positive nerves in the left stellate ganglion 1 week after cessation of LL-VNS were 99 684 &mgr;m2/mm2 (95% CI, 28 850 to 170 517) in LL-VNS dogs and 186 561 &mgr;m2/mm2 (95% CI, 154 956 to 218 166; P=0.008) in normal dogs. In group 2, the frequencies of paroxysmal atrial fibrillation and tachycardia during active LL-VNS were 1.4/d (95% CI, 0.5 to 5.1) and 8.0/d (95% CI, 5.3 to 12.0), respectively, significantly lower than during sham stimulation (9.2/d [95% CI, 5.3 to 13.1]; P=0.001 and 22.0/d [95% CI, 19.1 to 25.5], P<0.001, respectively). Conclusions— Left-sided low-level vagus nerve stimulation suppresses stellate ganglion nerve activities and reduces the incidences of paroxysmal atrial tachyarrhythmias in ambulatory dogs. Significant neural remodeling of the left stellate ganglion is evident 1 week after cessation of continuous LL-VNS.


Circulation | 2003

Altered Atrial Electrical Restitution and Heterogeneous Sympathetic Hyperinnervation in Hearts With Chronic Left Ventricular Myocardial Infarction Implications for Atrial Fibrillation

Yasushi Miyauchi; Shengmei Zhou; Yuji Okuyama; Mizuho Miyauchi; Hideki Hayashi; Akira Hamabe; Michael C. Fishbein; William J. Mandel; Lan S. Chen; Peng Sheng Chen; Hrayr S. Karagueuzian

Background The substrates for the increased incidence of atrial fibrillation (AF) in hearts with chronic left ventricular myocardial infarction (MI) remain poorly defined. We hypothesized that chronic MI is associated with atrial electrical and neural remodeling that enhances AF vulnerability. Methods and Results We created MI in 8 dogs by permanent occlusion of the left anterior descending (LAD) coronary artery. Seven dogs (3 with thoracotomy) that had no LAD occlusion served as controls. Eight weeks after surgery, the incidence and duration of pacing‐induced AF in the open chest anesthetized state were significantly (P<0.05) higher in the MI than in control dogs. Multisite biatrial monophasic action potential (MAP) recordings showed increased heterogeneity of MAP duration (MAPD) and MAPD restitution slope. AF in the MI groups was preceded by significantly higher MAPD (P<0.01) and MAP amplitude (P<0.05) alternans in both atria compared with controls. Epicardial mapping using 1792 bipolar electrodes (1‐mm spatial resolution) showed multisite wavebreaks of the paced wavefronts leading to AF in MI but not in control dogs. Multiple wavelets in MI dogs were associated with significantly higher incidence and longer duration of AF compared with control. The density of biatrial tyrosine hydroxylase (TH) and growth‐associated protein43 (GAP43) nerves were 5‐ to 8‐fold higher and were more heterogeneous in MI compared with control dogs. Conclusions Chronic ventricular MI with no atrial involvement causes heterogeneous alteration of atrial electrical restitution and atrial sympathetic hyperinnervation that might provide important substrates for the observed increased AF vulnerability. (Circulation. 2003;108:360‐366.)


Circulation Research | 2003

Sympathetic Nerve Sprouting, Electrical Remodeling, and Increased Vulnerability to Ventricular Fibrillation in Hypercholesterolemic Rabbits

Yen Bin Liu; Chau Chung Wu; Long Sheng Lu; Ming-Jai Su; Chii-Wann Lin; Shien-Fong Lin; Lan S. Chen; Michael C. Fishbein; Peng Sheng Chen; Yuan-Teh Lee

Abstract— Whether hypercholesterolemia (HC) can induce proarrhythmic neural and electrophysiological remodeling is unclear. We fed rabbits with either high cholesterol (HC, n=10) or standard (S, n=10) chows for 12 weeks (protocol 1), and with HC (n=12) or S (n=10) chows for 8 weeks (protocol 2). In protocol 3, 10 rabbits were fed with various protocols to observe the effects of different serum cholesterol levels. Results showed that the serum cholesterol levels were 2097±288 mg/dL in HC group and 59±9 mg/dL in S group for protocol 1 and were 1889±577 mg/dL in HC group and 50±21 mg/dL in S group for protocol 2. Density of growth-associated protein 43– (GAP43) and tyrosine hydroxylase– (TH) positive nerves in the heart was significantly higher in HC than S in protocol 1. Compared with S, HC rabbits had longer QTc intervals, more QTc dispersion, longer action potential duration, increased heterogeneity of repolarization and higher peak calcium current (ICa) density (14.0±3.1 versus 9.1±3.4 pA/pF;P <0.01) in protocol 1 and 2. Ventricular fibrillation was either induced or occurred spontaneously in 9/12 of hearts of HC group and 2/10 of hearts in S group in protocol 2. Protocol 3 showed a strong correlation between serum cholesterol level and nerve density for GAP43 (R2=0.94;P <0.001) and TH (R2=0.91;P <0.001). We conclude that HC resulted in nerve sprouting, sympathetic hyperinnervation, and increased ICa. The neural and electrophysiological remodeling was associated with prolonged action potential duration, longer QTc intervals, increased repolarization dispersion, and increased ventricular vulnerability to fibrillation.

Collaboration


Dive into the Lan S. Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shien Fong Lin

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Shengmei Zhou

University of California

View shared research outputs
Top Co-Authors

Avatar

Changyu Shen

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Alex Y. Tan

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge