Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lana Filipović.
Journal of Inorganic Biochemistry | 2012
Nevenka Gligorijević; Sandra Aranđelović; Lana Filipović; Ksenija Jakovljevic; Radmila Jankovic; Sanja Grgurić-Šipka; Ivanka Ivanović; Siniša Radulović; Živoslav Tešić
In our previous study, ruthenium(II)-p-cymene complexes of general formula [(η(6)-p-cymene)Ru(L)Cl2], L: 3-acetylpyridine (1), 2-amino-5-chloropyridine (2); and [(η(6)-p-cymene)Ru(HL)Cl], HL: 2,3-pyridinedicarboxylic acid (3), 2,4-pyridinedicarboxylic acid (4), revealed low antiproliferative activity, except complex [(η(6)-p-cymene)RuCl(picolinic acid)]·H(2)O (5) which exhibited IC(50) around 80 μM. In this study we further investigated in vitro potential of antimetastatic action of ruthenium complexes on HeLa and two endothelial cell lines. Comparison of structure and activity of five complexes indicated heterogenic mode of activity, with regard to the potential of antimetastatic and antiproliferative effect. Replacement of substituted pyridine ligand with picolinic acid (complex 5) around Ru(II) center contributed to complex cytotoxicity and ruthenium DNA binding affinity. Analysis of ruthenium(II) accumulation in DNA and protein fractions of HeLa cells, using ICP-OES revealed significantly higher content of complex 5 in DNA fraction in comparison to the other tested compounds. It also altered cell cycle progression, affected expression of DNA repair enzymes ERCC1 and MSH2, and showed enhanced activity in combination with 3-aminobenzamide. Regardless of their effect on cell growth, Ru(II) complexes exerted antimetastatic effect on several tumor cell lines in vitro, achieved mostly by the effect on cell adhesion, migration and angiogenesis, while picolinate ruthenium(II)-arene additionally exerted inhibitory effect on extracellular matrix degradation.
Inorganic Chemistry | 2014
Felix Bacher; Orsolya Dömötör; Maria Kaltenbrunner; Miloš Mojović; Ana Popović-Bijelić; Astrid Gräslund; Andrew Ozarowski; Lana Filipović; Siniša Radulović; Éva A. Enyedy; Vladimir B. Arion
The nickel(II), copper(II), and zinc(II) complexes of the proline-thiosemicarbazone hybrids 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone (L-Pro-FTSC or (S)-H2L(1)) and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone (D-Pro-FTSC or (R)-H2L(1)), as well as 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine 4,4-dimethyl-thiosemicarbazone (dm-L-Pro-FTSC or (S)-H2L(2)), namely, [Ni(L-Pro-FTSC-2H)]2 (1), [Ni(D-Pro-FTSC-2H)]2 (2), [Ni(dm-L-Pro-FTSC-2H)]2 (3), [Cu(dm-L-Pro-FTSC-2H)] (6), [Zn(L-Pro-FTSC-2H)] (7), and [Zn(D-Pro-FTSC-2H)] (8), in addition to two previously reported, [Cu(L-Pro-FTSC-2H)] (4), [Cu(D-Pro-FTSC-2H)] (5), were synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, circular dichroism, UV-vis, and electrospray ionization mass spectrometry. Compounds 1-3, 6, and 7 were also studied by single-crystal X-ray diffraction. Magnetic properties and solid-state high-field electron paramagnetic resonance spectra of 2 over the range of 50-420 GHz were investigated. The complex formation processes of L-Pro-FTSC with nickel(II) and zinc(II) were studied in aqueous solution due to the excellent water solubility of the complexes via pH potentiometry, UV-vis, and (1)H NMR spectroscopy. The results of the antiproliferative activity in vitro showed that dimethylation improves the cytotoxicity and hR2 RNR inhibition. Therefore, introduction of more lipophilic groups into thiosemicarbazone-proline backbone becomes an option for the synthesis of more efficient cytotoxic agents of this family of compounds.
Chemistry: A European Journal | 2015
Paul-Steffen Kuhn; Laura Cremer; Anatolie Gavriluta; Katarina K. Jovanović; Lana Filipović; Alfred A. Hummer; Gabriel E. Büchel; Biljana P. Dojčinović; Samuel M. Meier; Annette Rompel; Siniša Radulović; Jean Bernard Tommasino; Dominique Luneau; Vladimir B. Arion
A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by 13C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2− are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4]5− (Ln=Y, Dy). While YIII is eight-coordinate in 2, DyIII is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2–5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2–5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6–9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.
Radiology and Oncology | 2013
Lana Filipović; Sandra Arandelovic; Nevenka Gligorijević; Ana Krivokuca; Radmila Jankovic; Tatjana Srdic-Rajic; Gordana Rakić; Zivoslav Tesic; Sinisa Radulovic
Abstract Background. In our previous study we reported the synthesis and cytotoxicity of two trans-platinum(II) complexes: trans-[PtCl2(3-acetylpyridine)2] (1) and trans-[PtCl2(4-acetylpyridine)2] (2), revealing significant cytotoxic potential of 2. In order to evaluate the mechanism underlying biological activity of both trans-Pt(II) isomers, comparative studies versus cisplatin were performed in HeLa, MRC-5 and MS1 cells. Materials and methods. The cytotoxic activity of the investigated complexes was determined using SRB assay. The colagenolytic activity was determined using gelatin zymography, while the effect of platinum complexes on matrix metalloproteinases 2 and 9 mRNA expression was evaluated by quantitative real-time PCR. Apoptotic potential and cell cycle alterations were determined by FACS analyses. Western blot analysis was used to evaluate the effect on expression of DNA-repair enzyme ERCC1, and quantitative real-time PCR was used for the ERCC1 mRNA expression analysis. In vitro antiangiogenic potential was determined by tube formation assay. Platinum content in intracellular DNA and proteins was determined by inductively coupled plasma-optical emission spectrometry. Results. Compound 2 displayed an apparent cytoselective profile, and flow cytometry analysis in HeLa cells indicated that 2 exerted antiproliferative effect through apoptosis induction, while 1 induced both apoptosis and necrosis. Action of 1 and 2, as analyzed by quantitative real-time PCR and Western blot, was associated with down-regulation of ERCC1. Both trans-complexes inhibited MMP-9 mRNA expression in HeLa, while 2 significantly abrogated in vitro tubulogenesis in MS1 cells. Conclusions. The ability of 2 to induce multiple and selective in vitro cytotoxic effects encourages further investigations of trans-platinum(II) complexes with substituted pyridines.
European Journal of Medicinal Chemistry | 2014
Aleksandar Savić; Lana Filipović; Sandra Aranđelović; Biljana P. Dojčinović; Sinisa Radulovic; Tibor J. Sabo; Sanja Grgurić-Šipka
Dalton Transactions | 2015
Felix Bacher; Orsolya Dömötör; Anastasia Chugunova; Nóra Veronika Nagy; Lana Filipović; Siniša Radulović; Éva A. Enyedy; Vladimir B. Arion
European Journal of Medicinal Chemistry | 2012
Gordana Rakić; Sanja Grgurić-Šipka; Goran N. Kaluđerović; Martin Bette; Lana Filipović; Sandra Aranđelović; Siniša Radulović; Živoslav Tešić
Inorganic Chemistry | 2014
Paul-Steffen Kuhn; Gabriel E. Büchel; Katarina K. Jovanović; Lana Filipović; Sinisa Radulovic; Peter Rapta; Vladimir B. Arion
Inorganica Chimica Acta | 2017
Felix Bacher; Orsolya Dömötör; Éva A. Enyedy; Lana Filipović; Siniša Radulović; Gregory S. Smith; Vladimir B. Arion
Journal of Food Science and Technology-mysore | 2017
Sonja Veljović; Mile Veljovic; Ninoslav Nikicevic; Saša Despotović; Sinisa Radulovic; Miomir Niksic; Lana Filipović