Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lana Harder is active.

Publication


Featured researches published by Lana Harder.


Blood | 2009

Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia

Lisa J. Russell; Melania Capasso; Inga Vater; Takashi Akasaka; Olivier A. Bernard; María José Calasanz; Thiruppavaii Chandrasekaran; Elise Chapiro; Stephan Gesk; Mike Griffiths; David S. Guttery; Claudia Haferlach; Lana Harder; Olaf Heidenreich; Julie Irving; Lyndal Kearney; Florence Nguyen-Khac; Lee Machado; Lynne Minto; Aneela Majid; Anthony V. Moorman; Heather Morrison; Vikki Rand; Jonathan C. Strefford; Claire Schwab; Holger Tönnies; Martin J. S. Dyer; Reiner Siebert; Christine J. Harrison

We report 2 novel, cryptic chromosomal abnormalities in precursor B-cell acute lymphoblastic leukemia (BCP-ALL): a translocation, either t(X;14)(p22;q32) or t(Y;14)(p11;q32), in 33 patients and an interstitial deletion, either del(X)(p22.33p22.33) or del(Y)(p11.32p11.32), in 64 patients, involving the pseudoautosomal region (PAR1) of the sex chromosomes. The incidence of these abnormalities was 5% in childhood ALL (0.8% with the translocation, 4.2% with the deletion). Patients with the translocation were older (median age, 16 years), whereas the patients with the deletion were younger (median age, 4 years). The 2 abnormalities result in deregulated expression of the cytokine receptor, cytokine receptor-like factor 2, CRLF2 (also known as thymic stromal-derived lymphopoietin receptor, TSLPR). Overexpression of CRLF2 was associated with activation of the JAK-STAT pathway in cell lines and transduced primary B-cell progenitors, sustaining their proliferation and indicating a causal role of CRLF2 overexpression in lymphoid transformation. In Down syndrome (DS) ALL and 2 non-DS BCP-ALL cell lines, CRLF2 deregulation was associated with mutations of the JAK2 pseudokinase domain, suggesting oncogenic cooperation as well as highlighting a link between non-DS ALL and JAK2 mutations.


International Journal of Cancer | 2003

Hodgkin's lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p including REL and JAK2

Stefan Joos; Martin Granzow; Heidi Holtgreve-Grez; Reiner Siebert; Lana Harder; José I. Martín-Subero; Jürgen Wolf; Martyna Adamowicz; Thomas F. E. Barth; Peter Lichter; Anna Jauch

Four Hodgkins lymphoma cell lines (KM‐H2, HDLM‐2, L428, L1236) were analyzed for cytogenetic aberrations, applying multiplex fluorescence in situ hybridization, chromosome banding and comparative genomic hybridization. Each line was characterized by a highly heterogeneous pattern of karyotypic changes with a large spectrum of different translocated chromosomes (range 22–57). A recurrent finding in all cell lines was the presence of chromosomal rearrangements of the short arm of chromosome 2 involving the REL oncogene locus. Furthermore, multiple translocated copies of telomeric chromosomal segments were frequently detected. This resulted in a copy number increase of putative oncogenes, e.g., JAK2 (9p24) in 3 cell lines, FGFR3 (4p16) and CCND2 (12p13) in 2 cell lines as well as MYC (8q24) in 1 cell line. Our data confirm previous cytogenetic results from primary Hodgkins tumors suggesting an important pathogenic role of REL and JAK2 in this disease. In addition, they provide evidence for a novel cytogenetic pathomechanism leading to increased copy numbers of putative oncogenes from terminal chromosomal regions, most probably in the course of chromosomal stabilization by telomeric capture.


Blood | 2011

Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly children and young adults

Itziar Salaverria; Claudia Philipp; Ilske Oschlies; Christian W. Kohler; Markus Kreuz; Monika Szczepanowski; Birgit Burkhardt; Heiko Trautmann; Stefan Gesk; Miroslaw Andrusiewicz; Hilmar Berger; Miriam Fey; Lana Harder; Dirk Hasenclever; Michael Hummel; Markus Loeffler; Friederike Mahn; Idoia Martin-Guerrero; Shoji Pellissery; Christiane Pott; Michael Pfreundschuh; Alfred Reiter; Julia Richter; Maciej Rosolowski; Carsten Schwaenen; Harald Stein; Lorenz Trümper; Swen Wessendorf; Rainer Spang; Ralf Küppers

The prognosis of germinal center-derived B-cell (GCB) lymphomas, including follicular lymphoma and diffuse large-B-cell lymphoma (DLBCL), strongly depends on age. Children have a more favorable outcome than adults. It is not known whether this is because of differences in host characteristics, treatment protocols, or tumor biology, including the presence of chromosomal alterations. By screening for novel IGH translocation partners in pediatric and adult lymphomas, we identified chromosomal translocations juxtaposing the IRF4 oncogene next to one of the immunoglobulin (IG) loci as a novel recurrent aberration in mature B-cell lymphoma. FISH revealed 20 of 427 lymphomas to carry an IG/IRF4-fusion. Those were predominantly GCB-type DLBCL or follicular lymphoma grade 3, shared strong expression of IRF4/MUM1 and BCL6, and lacked PRDM1/BLIMP1 expression and t(14;18)/BCL2 breaks. BCL6 aberrations were common. The gene expression profile of IG/IRF4-positive lymphomas differed from other subtypes of DLBCL. A classifier for IG/IRF4 positivity containing 27 genes allowed accurate prediction. IG/IRF4 positivity was associated with young age and a favorable outcome. Our results suggest IRF4 translocations to be primary alterations in a molecularly defined subset of GCB-derived lymphomas. The probability for this subtype of lymphoma significantly decreases with age, suggesting that diversity in tumor biology might contribute to the age-dependent differences in prognosis of lymphoma.


PLOS ONE | 2009

A Comprehensive Microarray-Based DNA Methylation Study of 367 Hematological Neoplasms

José I. Martín-Subero; Ole Ammerpohl; Marina Bibikova; Eliza Wickham-Garcia; Xabier Agirre; Sara Alvarez; Monika Brüggemann; Stefanie Bug; María José Calasanz; Martina Deckert; Martin Dreyling; Ming Q. Du; Jan Dürig; Martin J. S. Dyer; Jian-Bing Fan; Stefan Gesk; Martin-Leo Hansmann; Lana Harder; Sylvia Hartmann; Wolfram Klapper; Ralf Küppers; Manuel Montesinos-Rongen; Inga Nagel; Christiane Pott; Julia Richter; Jose Roman-Gomez; Marc Seifert; Harald Stein; Javier Suela; Lorenz Trümper

Background Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required. Methodology/Principal Findings Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression. Conclusions/Significance We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes—DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1—that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play an important role in the development of different HNs.


British Journal of Haematology | 2003

Follicular lymphoma lacking the t(14;18)(q32;q21): identification of two disease subtypes.

Douglas E. Horsman; Ichiro Okamoto; Olga Ludkovski; Nhu D. Le; Lana Harder; Stefan Gesk; Reiner Siebert; Mukesh Chhanabhai; Laurie H. Sehn; Joseph M. Connors; Randy D. Gascoyne

Summary. The clinical and pathological features, including karyotype data and BCL2 protein expression pattern, of follicular lymphoma without a t(14;18)(q32;q21) have not been well defined. We have identified and conducted a detailed analysis of 50 cases with follicular lymphoma who lack the t(14;18). Fluorescent in situ hybridization (FISH) analysis was used to exclude cases with a cryptic IGH/BCL2 rearrangement. BCL2 protein expression level was assessed by immunohistochemistry. The karyotypes were assessed for recurrent sites of structural rearrangement, duplications and deletions on a band‐by‐band basis, and compared with a large cohort of cases with t(14;18). A distinct pattern of chromosomal alterations was identified in the cases without t(14;18). BCL2 protein overexpression was detected in 33% of 49 tested cases. In this minority, the karyotypes frequently showed increased copies of chromosome 18. The majority of cases (67%) did not show BCL2 overexpression and were characterized prominently by the presence of t(3;14)(q27;q32), implying a role for BCL6. Follicular lymphomas that lack a t(14;18) were segregated into two subgroups with distinct cytogenetic, phenotypic and possibly clinical features: one with BCL2 protein overexpression not related to an IGH/BCL2 rearrangement and a second without BCL2 overexpression. Objective identification of BCL2 expression level as well as BCL2 and BCL6 status by cytogenetic or FISH analysis has potential clinical utility and may yield insights into alternative genetic mechanisms associated with B‐cell lymphomas with a follicular growth pattern.


International Journal of Cancer | 2002

Interphase FISH assays for the detection of translocations with breakpoints in immunoglobulin light chain loci.

José I. Martín-Subero; Lana Harder; Stefan Gesk; Brigitte Schlegelberger; Werner Grote; Jose A. Martinez-Climent; Martin J. S. Dyer; Francisco J. Novo; María José Calasanz; Reiner Siebert

Many B‐cell malignancies bear chromosomal translocations juxtaposing immunoglobulin (IG) genes with oncogenes, resulting in deregulated expression of the latter. Translocations affecting the IG heavy chain (IGH) locus in chromosomal region 14q32 are most prevalent. However, variant translocations involving the IG kappa (IGK) locus in 2p12 or the IG lambda (IGL) locus in 22q11 occur recurrently in B‐cell neoplasias. No routine methods for the detection of all breakpoints involving IG light chain loci independently of the translocation partner have been described. For this reason, we have designed 2 novel interphase fluorescence in situ hybridization (FISH) assays using differentially labeled probes flanking the IGK and IGL locus, respectively. Based on extensive control studies, the diagnostic thresholds for the detection of breakpoints were set at 0.3% for IGK and 1.4% for IGL. Fifteen cases of B‐cell malignancies with cytogenetically detectable chromosomal abnormalities in 2p11‐14 were investigated with the FISH assay for IGK. Breakpoints affecting the IGK locus were detected in 7 cases including all 4 variant Burkitts translocations t(2;8)(p12;q24) and a variant BCL2‐associated translocation t(2;18)(p12;q21). Other translocation partners were chromosome bands 7q21 and 16q24. Ten cases with abnormalities in 22q11‐12 were investigated with the FISH assay for IGL. Breakpoints in the IGL locus were diagnosed in 7 cases including both variant Burkitts translocations t(8;22)(q24;q11) and a t(3;22)(q27;q11) involving the BCL6 locus. Other translocation partners were 2p13‐14, 4q13 and 16p12. Our results show that these FISH assays provide flexible, simple and reliable tools in the diagnosis and characterization of genetic changes in B‐cell malignancies.


Leukemia | 2000

Molecular analysis of the CALM/AF10 fusion: identical rearrangements in acute myeloid leukemia, acute lymphoblastic leukemia and malignant lymphoma patients.

Stefan K. Bohlander; V. Muschinsky; K. Schrader; Reiner Siebert; Brigitte Schlegelberger; Lana Harder; V. Schemmel; Christa Fonatsch; W.-D. Ludwig; Wolfgang Hiddemann; Martin Dreyling

The recurring translocation t(10;11)(p13;q14) which is found in acute myeloid leukemia (AML) and in acute lymphoblastic leukemia (ALL) results in the fusion of the putative transcription factor AF10 to CALM encoding a clathrin assembly protein. Previous studies using mainly fluorescence in situ hybridization (FISH) analysis have shown that the CALM/AF10 rearrangement is found in immature acute myeloid leukemia (AML) of subtype M0 and M1 and in T cell ALL. In this study we analyzed the CALM/AF10 and AF10/CALM fusion mRNAs in a series of three patients with AML, one patient with T-ALL and two patients with precusor T lymphoblastic lymphoma. In all six patients the breakpoint in CALM is at the 3′ end of the coding region (nt1926/1927 or nt 2091/2092). Three breakpoints could be identified in AF10 (nt 588/589, nt 882/883 and nt 978/979). These data demonstrate that the CALM/AF10 fusions found in patients differ only slightly with respect to the portion of AF10 present and that there is no obvious difference between the fusions found in AML patients compared to those found in patients with lymphoid malignancies.


American Journal of Pathology | 2002

Multicolor-FICTION: Expanding the Possibilities of Combined Morphologic, Immunophenotypic, and Genetic Single Cell Analyses

José I. Martín-Subero; Ilse Chudoba; Lana Harder; Stefan Gesk; Werner Grote; Francisco J. Novo; María José Calasanz; Reiner Siebert

Phenotypic and genotypic analyses of cells are increasingly essential for understanding pathogenetic mechanisms as well as for diagnosing and classifying malignancies and other diseases. We report a novel multicolor approach based on the FICTION (fluorescence immunophenotyping and interphase cytogenetics as a tool for the investigation of neoplasms) technique, which enables the simultaneous detection of morphological, immunophenotypic, and genetic characteristics of single cells. As prerequisite, multicolor interphase fluorescence in situ hybridization assays for B-cell non-Hodgkins lymphoma and anaplastic large-cell lymphoma have been developed. These assays allow the simultaneous detection of the most frequent primary chromosomal aberrations in these neoplasms, such as t(8;14), t(11;14), t(14;18), and t(3;14), and the various rearrangements of the ALK gene, respectively. To establish the multicolor FICTION technique, these assays were combined with the immunophenotypic detection of lineage- or tumor-specific antigens, namely CD20 and ALK, respectively. For evaluation of multicolor FICTION experiments, image acquisition was performed by automatic sequential capturing of multiple focal planes. Thus, three-dimensional information was obtained. The multicolor FICTION assays were applied to well-characterized lymphoma samples, proving the performance, validity, and diagnostic power of the technique. Future multicolor FICTION applications include the detection of preneoplastic lesions, early stage and minimal residual diseases, or micrometastases.


Cancer Research | 2006

Chromosomal Breakpoints Affecting Immunoglobulin Loci Are Recurrent in Hodgkin and Reed-Sternberg Cells of Classical Hodgkin Lymphoma

José I. Martín-Subero; Wolfram Klapper; Anna Sotnikova; Evelyne Callet-Bauchu; Lana Harder; Christian Bastard; Roland Schmitz; Susanne Grohmann; Jorge Höppner; Jennifer Riemke; Thomas F. E. Barth; Françoise Berger; Heinz-Wolfram Bernd; Alexander Claviez; Stefan Gesk; Georgiy A. Frank; Irina B. Kaplanskaya; Peter Møller; Reza Parwaresch; Thomas Rüdiger; Harald Stein; Ralf Küppers; Martin Leo Hansmann; Reiner Siebert

Chromosomal breakpoints affecting immunoglobulin (IG) loci are recurrent in many subtypes of B-cell lymphomas. However, despite the predominant B-cell origin of the Hodgkin and Reed-Sternberg (HRS) cells in classical Hodgkin lymphoma (cHL), the presence of chromosomal translocations in IG loci has not yet been systematically explored. Therefore, we have investigated a series of cHL for chromosomal breakpoints in the IGH (n = 230), IGL (n = 139), and IGK (n = 138) loci by interphase cytogenetics. Breakpoints in the IGH, IGL, or IGK locus were observed in the HRS cells of 26 of 149 (17%), 2 of 70, and 1 of 77 evaluable cHLs, respectively. The IG partners could be identified in eight cHLs and involved chromosomal bands 2p16 (REL), 3q27 (BCL6, two cases), 8q24.1 (MYC), 14q24.3, 16p13.1, 17q12, and 19q13.2 (BCL3/RELB). In 65 of 85 (76%) cHLs evaluable for an IGH triple-color probe, the HRS cells showed evidence for a (partial) deletion of the IGH constant region, suggesting the presence of class switch recombination (CSR). Furthermore, analyses with this probe in cases with IGH breakpoints indicated that at least part of them seem to be derived from CSR defects. Our results show that chromosomal breakpoints affecting the IG loci are recurrent in cHL.


Leukemia | 2003

Molecular cytogenetic detection of chromosomal breakpoints in T-cell receptor gene loci.

Stefan Gesk; José I. Martín-Subero; Lana Harder; B Luhmann; Brigitte Schlegelberger; María José Calasanz; W Grote; Reiner Siebert

Chromosomal aberrations with breakpoints in T-cell receptor (TCR) gene loci are recurrent in several T-cell malignancies. Although the importance of interphase cytogenetics has been extensively shown in B-cell lymphomas, hardly any molecular cytogenetic tools are available for recurrent changes in T-cell disorders. Thus, we have established fluorescence in situ hybridization (FISH)-based break-apart assays for the TCRA/D (14q11), TCRB (7q34) and TCRG (7p14) genes and the TCL cluster (14q32). The assays were validated in normal controls as well as in 43 T-cell malignancies with cytogenetically proven 14q11, 7q34–35 or 7p13–21 aberrations. Breakpoints in TCRA/D, TCRB and TCRG could be diagnosed by these assays in 32/33 T-cell neoplasms with chromosome 14q11, 3/6 with 7q34–35 and 1/7 with 7p13–21 alterations, respectively. Application of the new FISH assays to a series of 24 angioimmunoblastic and 12 cutaneous T-cell lymphomas confirmed the cytogenetic evidence of lack of breakpoints in the TCRA/D or TCRB locus. Simultaneous detection of TCRA/D or TCRB breaks was achieved in a multicolor approach, which was further combined with detection of the T-cell-specific CD3 antigen in a multicolor FICTION (Fluorescence Immunophenotyping and Interphase Cytogenetics as a Tool for the Investigation of Neoplasm) assay. These new FISH and FICTION assays provide sensitive, rapid and accurate tools for the diagnosis and biological characterization of T-cell malignancies.

Collaboration


Dive into the Lana Harder's collaboration.

Top Co-Authors

Avatar

Reiner Siebert

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin J. S. Dyer

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aneela Majid

University of Leicester

View shared research outputs
Researchain Logo
Decentralizing Knowledge