Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lance Bigelow is active.

Publication


Featured researches published by Lance Bigelow.


Nature Methods | 2008

Large-scale evaluation of protein reductive methylation for improving protein crystallization

Youngchang Kim; Pearl Quartey; Hui Li; Lour Volkart; Catherine Hatzos; Changsoo Chang; Boguslaw Nocek; Marianne E. Cuff; Jerzy Osipiuk; Kemin Tan; Yao Fan; Lance Bigelow; Natalia Maltseva; Ruiying Wu; Maria Borovilos; Erika Duggan; Min Zhou; T. Andrew Binkowski; Rongguang Zhang; Andrzej Joachimiak

Large-scale evaluation of protein reductive methylation for improving protein crystallization


Journal of Molecular Biology | 2012

Interaction of j-protein co-chaperone jac1 with fe-s scaffold isu is indispensable in vivo and conserved in evolution.

Szymon J. Ciesielski; Brenda Schilke; Jerzy Osipiuk; Lance Bigelow; Rory Mulligan; Julia Majewska; Andrzej Joachimiak; Jaroslaw Marszalek; Elizabeth A. Craig; Rafal Dutkiewicz

The ubiquitous mitochondrial J-protein Jac1, called HscB in Escherichia coli, and its partner Hsp70 play a critical role in the transfer of Fe-S clusters from the scaffold protein Isu to recipient proteins. Biochemical results from eukaryotic and prokaryotic systems indicate that formation of the Jac1-Isu complex is important for both targeting of the Isu for Hsp70 binding and stimulation of Hsp70s ATPase activity. However, in apparent contradiction, we previously reported that an 8-fold decrease in Jac1s affinity for Isu1 is well tolerated in vivo, raising the question as to whether the Jac1:Isu interaction actually plays an important biological role. Here, we report the determination of the structure of Jac1 from Saccharomyces cerevisiae. Taking advantage of this information and recently published data from the homologous bacterial system, we determined that a total of eight surface-exposed residues play a role in Isu binding, as assessed by a set of biochemical assays. A variant having alanines substituted for these eight residues was unable to support growth of a jac1-Δ strain. However, replacement of three residues caused partial loss of function, resulting in a significant decrease in the Jac1:Isu1 interaction, a slow growth phenotype, and a reduction in the activity of Fe-S cluster-containing enzymes. Thus, we conclude that the Jac1:Isu1 interaction plays an indispensable role in the essential process of mitochondrial Fe-S cluster biogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Structural and evolutionary relationships of “AT-less” type I polyketide synthase ketosynthases

Jeremy R. Lohman; Ming Ma; Jerzy Osipiuk; Boguslaw Nocek; Youngchang Kim; Changsoo Chang; Marianne E. Cuff; Jamey Mack; Lance Bigelow; Hui Li; Michael Endres; Gyorgy Babnigg; Andrzej Joachimiak; George N. Phillips; Ben Shen

Significance There are many differences in the sequences of ketosynthase (KS) domains from the well-studied type I polyketide synthases (PKSs) and the more recently discovered acyltransferase (AT)-less type I PKSs. The AT-less type I PKSs generate polyketides with a high degree of structural diversity, which stems from their evolution by horizontal gene transfer. In comparison, canonical type I PKSs evolve by gene duplication. The seven structures of AT-less type I PKS KSs reveal the molecular details surrounding the evolution of substrate specificity and structural diversity, and their overall differences with canonical type I PKS KSs. Understanding the mechanism of substrate specificity will allow reprogramming of the KS active sites to generate polyketide analogues by PKS and polyketide biosynthetic pathway engineering. Acyltransferase (AT)-less type I polyketide synthases (PKSs) break the type I PKS paradigm. They lack the integrated AT domains within their modules and instead use a discrete AT that acts in trans, whereas a type I PKS module minimally contains AT, acyl carrier protein (ACP), and ketosynthase (KS) domains. Structures of canonical type I PKS KS-AT didomains reveal structured linkers that connect the two domains. AT-less type I PKS KSs have remnants of these linkers, which have been hypothesized to be AT docking domains. Natural products produced by AT-less type I PKSs are very complex because of an increased representation of unique modifying domains. AT-less type I PKS KSs possess substrate specificity and fall into phylogenetic clades that correlate with their substrates, whereas canonical type I PKS KSs are monophyletic. We have solved crystal structures of seven AT-less type I PKS KS domains that represent various sequence clusters, revealing insight into the large structural and subtle amino acid residue differences that lead to unique active site topologies and substrate specificities. One set of structures represents a larger group of KS domains from both canonical and AT-less type I PKSs that accept amino acid-containing substrates. One structure has a partial AT-domain, revealing the structural consequences of a type I PKS KS evolving into an AT-less type I PKS KS. These structures highlight the structural diversity within the AT-less type I PKS KS family, and most important, provide a unique opportunity to study the molecular evolution of substrate specificity within the type I PKSs.


Proteins | 2014

The crystal structure of BlmI as a model for nonribosomal peptide synthetase peptidyl carrier proteins

Jeremy R. Lohman; Ming Ma; Marianne E. Cuff; Lance Bigelow; Jessica Bearden; Gyorgy Babnigg; Andrzej Joachimiak; George N. Phillips; Ben Shen

Carrier proteins (CPs) play a critical role in the biosynthesis of various natural products, especially in nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymology, where the CPs are referred to as peptidyl‐carrier proteins (PCPs) or acyl‐carrier proteins (ACPs), respectively. CPs can either be a domain in large multifunctional polypeptides or standalone proteins, termed Type I and Type II, respectively. There have been many biochemical studies of the Type I PKS and NRPS CPs, and of Type II ACPs. However, recently a number of Type II PCPs have been found and biochemically characterized. In order to understand the possible interaction surfaces for combinatorial biosynthetic efforts we crystallized the first characterized and representative Type II PCP member, BlmI, from the bleomycin biosynthetic pathway from Streptomyces verticillus ATCC 15003. The structure is similar to CPs in general but most closely resembles PCPs. Comparisons with previously determined PCP structures in complex with catalytic domains reveals a common interaction surface. This surface is highly variable in charge and shape, which likely confers specificity for interactions. Previous nuclear magnetic resonance (NMR) analysis of a prototypical Type I PCP excised from the multimodular context revealed three conformational states. Comparison of the states with the structure of BlmI and other PCPs reveals that only one of the NMR states is found in other studies, suggesting the other two states may not be relevant. The state represented by the BlmI crystal structure can therefore serve as a model for both Type I and Type II PCPs. Proteins 2014; 82:1210–1218.


Journal of Biological Chemistry | 2016

How Aromatic Compounds Block DNA Binding of HcaR Catabolite Regulator

Youngchang Kim; Grazyna Joachimiak; Lance Bigelow; Gyorgy Babnigg; Andrzej Joachimiak

Bacterial catabolism of aromatic compounds from various sources including phenylpropanoids and flavonoids that are abundant in soil plays an important role in the recycling of carbon in the ecosystem. We have determined the crystal structures of apo-HcaR from Acinetobacter sp. ADP1, a MarR/SlyA transcription factor, in complexes with hydroxycinnamates and a specific DNA operator. The protein regulates the expression of the hca catabolic operon in Acinetobacter and related bacterial strains, allowing utilization of hydroxycinnamates as sole sources of carbon. HcaR binds multiple ligands, and as a result the transcription of genes encoding several catabolic enzymes is increased. The 1.9–2.4 Å resolution structures presented here explain how HcaR recognizes four ligands (ferulate, 3,4-dihydroxybenzoate, p-coumarate, and vanillin) using the same binding site. The ligand promiscuity appears to be an adaptation to match a broad specificity of hydroxycinnamate catabolic enzymes while responding to toxic thioester intermediates. Structures of apo-HcaR and in complex with a specific DNA hca operator when combined with binding studies of hydroxycinnamates show how aromatic ligands render HcaR unproductive in recognizing a specific DNA target. The current study contributes to a better understanding of the hca catabolic operon regulation mechanism by the transcription factor HcaR.


Biochemistry | 2016

Crystal Structures of SgcE6 and SgcC, the Two-Component Monooxygenase That Catalyzes Hydroxylation of a Carrier Protein-Tethered Substrate during the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027 in Streptomyces globisporus.

Chin-Yuan Chang; Jeremy R. Lohman; Hongnan Cao; Kemin Tan; Jeffrey D. Rudolf; Ming Ma; Weijun Xu; Craig A. Bingman; Ragothaman M. Yennamalli; Lance Bigelow; Gyorgy Babnigg; Xiaohui Yan; Andrzej Joachimiak; George N. Phillips; Ben Shen

C-1027 is a chromoprotein enediyne antitumor antibiotic produced by Streptomyces globisporus. In the last step of biosynthesis of the (S)-3-chloro-5-hydroxy-β-tyrosine moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose a two-component monooxygenase that hydroxylates the C-5 position of (S)-3-chloro-β-tyrosine. This two-component monooxygenase is remarkable for two reasons. (i) SgcE6 specifically reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl carrier protein (PCP)-tethered substrate. To address the molecular details of substrate specificity, we determined the crystal structures of SgcE6 and SgcC at 1.66 and 2.63 Å resolution, respectively. SgcE6 shares a similar β-barrel fold with the class I HpaC-like flavin reductases. A flexible loop near the active site of SgcE6 plays a role in FAD binding, likely by providing sufficient space to accommodate the AMP moiety of FAD, when compared to that of FMN-utilizing homologues. SgcC shows structural similarity to a few other known FADH2-dependent monooxygenases and sheds light on some biochemically but not structurally characterized homologues. The crystal structures reported here provide insights into substrate specificity, and comparison with homologues provides a catalytic mechanism of the two-component, FADH2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes the hydroxylation of a PCP-tethered substrate.


Proteins | 2015

Structural characterization of AtmS13, a putative sugar aminotransferase involved in indolocarbazole AT2433 aminopentose biosynthesis

Shanteri Singh; Youngchang Kim; Fengbin Wang; Lance Bigelow; Michael Endres; Madan K. Kharel; Gyorgy Babnigg; Craig A. Bingman; Andrzej Joachimiak; Jon S. Thorson; George N. Phillips

AT2433 from Actinomadura melliaura is an indolocarbazole antitumor antibiotic structurally distinguished by its unique aminodideoxypentose‐containing disaccharide moiety. The corresponding sugar nucleotide‐based biosynthetic pathway for this unusual sugar derives from comparative genomics where AtmS13 has been suggested as the contributing sugar aminotransferase (SAT). Determination of the AtmS13 X‐ray structure at 1.50‐Å resolution reveals it as a member of the aspartate aminotransferase fold type I (AAT‐I). Structural comparisons of AtmS13 with homologous SATs that act upon similar substrates implicate potential active site residues that contribute to distinctions in sugar C5 (hexose vs. pentose) and/or sugar C2 (deoxy vs. hydroxyl) substrate specificity. Proteins 2015; 83:1547–1554.


Methods of Molecular Biology | 2014

Salvage of Failed Protein Targets by Reductive Alkylation

Kemin Tan; Youngchang Kim; Catherine Hatzos-Skintges; Changsoo Chang; Marianne E. Cuff; Gekleng Chhor; Jerzy Osipiuk; Karolina Michalska; Boguslaw Nocek; Hao An; Gyorgy Babnigg; Lance Bigelow; Grazyna Joachimiak; Hui Li; Jamey Mack; Magdalena Makowska-Grzyska; Natalia Maltseva; Rory Mulligan; Christine Tesar; Min Zhou; Andrzej Joachimiak

The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.


Biochemistry | 2015

Crystal Structure of the Zorbamycin-Binding Protein ZbmA, the Primary Self-Resistance Element in Streptomyces flavoviridis ATCC21892

Jeffrey D. Rudolf; Lance Bigelow; Changsoo Chang; Marianne E. Cuff; Jeremy R. Lohman; Chin-Yuan Chang; Ming Ma; Dong Yang; Shonda Clancy; Gyorgy Babnigg; Andrzej Joachimiak; George N. Phillips; Ben Shen

The bleomycins (BLMs), tallysomycins (TLMs), phleomycin, and zorbamycin (ZBM) are members of the BLM family of glycopeptide-derived antitumor antibiotics. The BLM-producing Streptomyces verticillus ATCC15003 and the TLM-producing Streptoalloteichus hindustanus E465-94 ATCC31158 both possess at least two self-resistance elements, an N-acetyltransferase and a binding protein. The N-acetyltransferase provides resistance by disrupting the metal-binding domain of the antibiotic that is required for activity, while the binding protein confers resistance by sequestering the metal-bound antibiotic and preventing drug activation via molecular oxygen. We recently established that the ZBM producer, Streptomyces flavoviridis ATCC21892, lacks the N-acetyltransferase resistance gene and that the ZBM-binding protein, ZbmA, is sufficient to confer resistance in the producing strain. To investigate the resistance mechanism attributed to ZbmA, we determined the crystal structures of apo and Cu(II)-ZBM-bound ZbmA at high resolutions of 1.90 and 1.65 Å, respectively. A comparison and contrast with other structurally characterized members of the BLM-binding protein family revealed key differences in the protein-ligand binding environment that fine-tunes the ability of ZbmA to sequester metal-bound ZBM and supports drug sequestration as the primary resistance mechanism in the producing organisms of the BLM family of antitumor antibiotics.


Protein Science | 2017

Insights into PG-Binding, Conformational Change, and Dimerization of the OmpA C-terminal Domains from Salmonella enterica serovar Typhimurium and Borrelia burgdorferi

Kemin Tan; Brooke L. Deatherage Kaiser; Ruiying Wu; Marianne E. Cuff; Yao Fan; Lance Bigelow; Robert Jedrzejczak; Joshua N. Adkins; John R. Cort; Gyorgy Babnigg; Andrzej Joachimiak

Salmonella enterica serovar Typhimurium can induce both humoral and cell‐mediated responses when establishing itself in the host. These responses are primarily stimulated against the lipopolysaccharide and major outer membrane (OM) proteins. OmpA is one of these major OM proteins. It comprises a N‐terminal eight‐stranded β‐barrel transmembrane domain and a C‐terminal domain (OmpACTD). The OmpACTD and its homologs are believed to bind to peptidoglycan (PG) within the periplasm, maintaining bacterial osmotic homeostasis and modulating the permeability and integrity of the OM. Here we present the first crystal structures of the OmpACTD from two pathogens: S. typhimurium (STOmpACTD) in open and closed forms and causative agent of Lyme Disease Borrelia burgdorferi (BbOmpACTD), in closed form. In the open form of STOmpACTD, an aspartate residue from a long β2‐α3 loop points into the binding pocket, suggesting that an anion group such as a carboxylate group from PG is favored at the binding site. In the closed form of STOmpACTD and in the structure of BbOmpACTD, a sulfate group from the crystallization buffer is tightly bound at the binding site. The differences between the closed and open forms of STOmpACTD, suggest a large conformational change that includes an extension of α3 helix by ordering a part of β2‐α3 loop. We propose that the sulfate anion observed in these structures mimics the carboxylate group of PG when bound to STOmpACTD suggesting PG‐anchoring mechanism. In addition, the binding of PG or a ligand mimic may enhance dimerization of STOmpACTD, or possibly that of full length STOmpA.

Collaboration


Dive into the Lance Bigelow's collaboration.

Top Co-Authors

Avatar

Andrzej Joachimiak

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Gyorgy Babnigg

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Youngchang Kim

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Shen

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jeremy R. Lohman

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Changsoo Chang

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marianne E. Cuff

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ming Ma

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Craig A. Bingman

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge