Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lance Cooley is active.

Publication


Featured researches published by Lance Cooley.


Superconductor Science and Technology | 2013

Superconductivity and the environment: a Roadmap

Shigehiro Nishijima; Steven Eckroad; Adela Marian; Kyeongdal Choi; Woo Seok Kim; Motoaki Terai; Zigang Deng; Jun Zheng; Jiasu Wang; Katsuya Umemoto; Jia Du; Pascal Febvre; Shane Keenan; Oleg A. Mukhanov; Lance Cooley; C P Foley; William V. Hassenzahl; Mitsuru Izumi

There is universal agreement between the United Nations and governments from the richest to the poorest nations that humanity faces unprecedented global challenges relating to sustainable energy, clean water, low-emission transportation, coping with climate change and natural disasters, and reclaiming use of land. We have invited researchers from a range of eclectic research areas to provide a Roadmap of how superconducting technologies could address these major challenges confronting humanity.Superconductivity has, over the century since its discovery by Kamerlingh Onnes in 1911, promised to provide solutions to many challenges. So far, most superconducting technologies are esoteric systems that are used in laboratories and hospitals. Large science projects have long appreciated the ability of superconductivity to efficiently create high magnetic fields that are otherwise very costly to achieve with ordinary materials. The most successful applications outside of large science are high-field magnets for magnetic resonance imaging, laboratory magnetometers for mineral and materials characterization, filters for mobile communications, and magnetoencephalography for understanding the human brain.The stage is now set for superconductivity to make more general contributions. Humanity uses practically unthinkable amounts of energy to drive our modern way of life. Overall, global power usage has been predicted to almost double from 16.5 to 30?TW in the next four decades (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources).The economy with which electrons carry energy compels the continued quest for efficient superconducting power generation, energy storage, and power transmission. The growing global population requires new arable land and treatment of water, especially in remote areas, and superconductivity offers unique solutions to these problems. Exquisite detectors give warning of changes that are otherwise invisible. Prediction of climate and disasters will be helped by future supercomputer technologies that support huge amounts of data and sophisticated modeling, and with the aid of superconductivity these systems might not require the energy of a large city.We present different sections on applications that could address (or are addressing) a range of environmental issues. The Roadmap covers water purification, power distribution and storage, low-environmental impact transport, environmental sensing (particularly for the removal of unexploded munitions), monitoring the Earth?s magnetic fields for earthquakes and major solar activity, and, finally, developing a petaflop supercomputer that only requires 3% of the current supercomputer power provision while being 50 times faster.Access to fresh water. With only 2.5% of the water on Earth being fresh and climate change modeling forecasting that many areas will become drier, the ability to recycle water and achieve compact water recycling systems for sewage or ground water treatment is critical. The first section (by Nishijima) points to the potential of superconducting magnetic separation to enable water recycling and reuse.Energy. The Equinox Summit held in Waterloo Canada 2011?(2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources) identified electricity use as humanity?s largest contributor to greenhouse gas emissions. Our appetite for electricity is growing faster than for any other form of energy. The communiqu? from the summit said ?Transforming the ways we generate, distribute and store electricity is among the most pressing challenges facing society today?. If we want to stabilize CO2 levels in our atmosphere at 550 parts per million, all of that growth needs to be met by non-carbon forms of energy? (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). Superconducting technologies can provide the energy efficiencies to achieve, in the European Union alone, 33?65% of the required reduction in greenhouse gas emissions according to the Kyoto Protocol (Hartikainen et?al 2003 Supercond. Sci. Technol. 16 963). New technologies would include superconducting energy storage systems to effectively store power generation from renewable sources as well as high-temperature superconducting systems used in generators, transformers and synchronous motors in power stations and heavy-industry facilities. However, to be effective, these systems must be superior to conventional systems and, in reality, market penetration will occur as existing electrical machinery is written off. At current write-off rates, to achieve a 50% transfer to superconducting systems will take 20?years (Hartikainen et?al 2003 Supercond. Sci. Technol. 16 963).The Roadmap next considers dc transmission of green power with a section by Eckroad and Marian who provide an update on the development of superconducting power transmission lines in view of recent sustainability studies. The potential of magnetic energy storage is then presented by Coi and Kim, who argue that a successful transition to wind and solar power generation must be harmonized with the conventional electrical network, which requires a storage technology with a fast response and long backup times.Transport. Superconducting Maglev trains and motors for international shipping have the potential to considerably reduce the emissions that contribute to greenhouse gases while improving their economic viability by reducing losses and improving efficiencies. International shipping, alone, contributes 3% of the greenhouse gas emissions. Three sections of the Roadmap identify how high-speed rail can be a major solution to providing fast, low energy, environmentally-friendly transport enabling reduction in automobile and aircraft travel by offering an alternative that is very competitive. With maritime international environmental regulations tightening, HTS motors with the characteristics of high torque and compactness will become important devices for high-performance and low-emission electric ship propulsion systems. A section on the development of a megawatt-class superconducting motor for ship propulsion is presented by Umemoto.Monitoring in manufacturing for waste reduction. Environmental impact from the waste created by the manufacturing sector and the need to make manufacturing efficient can be addressed by terahertz imaging. This technology has great potential in non-destructive testing, industrial process monitoring and control to greatly improve the industry process efficiency and reliability by reducing waste materials and toxic by-products. The section by Du shows how terahertz imaging can provide process and property information such as rust levels under paint that can assist with the reduction of waste in manufacturing and maintenance.Monitoring for naturally occurring disturbances. The environmental and social impact of natural disasters is mounting. Febvre provides the Roadmap for the use of ultra-sensitive magnetometry to understand geomagnetic phenomena and Earth?ionosphere couplings through the study of very small variations of the magnetic field. This magnetic monitoring has many implications for understanding our environment and providing new tools for early warning of natural hazards, either on Earth or in space which will enable us to be better prepared for natural disasters.Restoring environments after military use. Throughout the world, there are many areas confirmed or suspected of being contaminated by unexploded munitions known as unexploded ordnance (UXO). Its presence is the result of wars and training of military forces. Areas affected by UXO contamination are hazardous to the public and have a major influence on the nature of land use. UXO has impact in developed as well as developing nations. For example, the USA has UXO dating back to the American Civil War and countries such as Cambodia are living with landmines as a daily issue due to more recent wars. Underwater UXO has caused severe impacts such as the explosion in 1969 in the waters of Kent in the UK that caused a reading of 4.5 on the Richter scale for earthquake monitors. Another example was a land-based detonation of a 500?kg World War II bomb in Germany killing three people in 2010. There is countless UXO from recent conflicts worldwide. Detection and accurate location with 100% reliability is required to return land to safe civilian use. Keenan provides details of a prototype magnetic gradiometer developed for this purpose.Reducing power needs for high-end IT. Supercomputers are so large that they are close to requiring their own small power plant to support the energy needed to run the computer. For example, in 2011 Facebook data centers and operations used 532 million kW hours of energy. Mukhanov explores the potential of reducing the power dissipation for future supercomputers from more than 500?MW for Exascale systems to 0.2?MW by using superconducting-ferromagnetic Josephson junctions for magnetic memory and programmable logic.Clearly superconductivity is an ultimate energy-saving technology, and its practical implementation will contribute to the reduction of CO2 emissions, improved water purification, reduction of waste and timely preparedness for natural disasters or significant events. This Roadmap shows how the application of superconducting technologies will have a significant impact when they are adopted.


Journal of Applied Physics | 2013

Role of internal gases and creep of Ag in controlling the critical current density of Ag-sheathed Bi2Sr2CaCu2Ox wires

T. Shen; A. Ghosh; Lance Cooley; J. Jiang

High engineering critical current density JE of > 500 A/mm2 at 20 T and 4.2 K can be regularly achieved in Ag-sheathed multifilamentary Bi2Sr2CaCu2Ox (Bi-2212) round wire when the sample length is several centimeters. However, JE(20 T) in Bi-2212 wires of several meters length, as well as longer pieces wound in coils, rarely exceeds 200 A/mm2. Moreover, long-length wires often exhibit signs of Bi-2212 leakage after melt processing that are rarely found in short, open-end samples. We studied the length dependence of JE of state-of-the-art powder-in-tube (PIT) Bi-2212 wires and gases released by them during melt processing using mass spectroscopy, confirming that JE degradation with length is due to wire swelling produced by high internal gas pressures at elevated temperatures [A. Malagoli et al. Supercond. Sci. Technol. 24, 075016 (2011) and A. Malagoli et al. Supercond. Sci. Technol. 26, 055018 (2013)]. We further modeled the gas transport in Bi-2212 wires and examined the wire expansion at critical stage...


Applied Physics Letters | 2008

Tunneling study of cavity grade Nb : Possible magnetic scattering at the surface

Thomas Proslier; J. F. Zasadzinski; Lance Cooley; C. Antoine; J. Moore; J. Norem; Michael J. Pellin; K. E. Gray

Tunneling spectroscopy was performed on Nb pieces prepared by the same processes used to etch and clean superconducting radio frequency (SRF) cavities. Air exposed, electropolished Nb exhibited a surface superconducting gap Δ=1.55meV, which is characteristic of a clean, bulk Nb. However, the tunneling density of states (DOS) was significantly broadened. The Nb pieces, which were treated with the same mild baking used to improve the Q slope in SRF cavities, reveal a sharper DOS. Good fits to the DOS were obtained by using the Shiba theory, suggesting that magnetic scattering of quasiparticles is the origin of the gapless surface superconductivity and a heretofore unrecognized contributor to the Q-slope problem of Nb SRF cavities.


Superconductor Science and Technology | 2015

High strength kiloampere Bi2Sr2CaCu2Ox cables for high-field magnet applications

Tengming Shen; Pei Li; J. Jiang; Lance Cooley; J.C. Tompkins; Dustin McRae; Robert P. Walsh

Multifilamentary Ag-sheathed Bi2Sr2CaCu2Ox (Bi-2212) wire can carry sufficient critical current density Jc for the development of powerful superconducting magnets. However, the range of its applications is limited by the low mechanical strength of the Ag/Bi-2212 strand. A potential solution is to cable Ag/Bi-2212 wire with high-strength materials that are compatible with the Bi-2212 heat treatment in an oxygen atmosphere. Past attempts have not always been successful, because the high-strength materials reacted with Bi-2212 wires, significantly reducing their Jc. We examined the nature of reactions occurring when Ag/Bi-2212 wires are heat-treated in direct contact with several commonly used high-strength alloys and a new Fe-Cr-Al alloy. INCONEL X750 and INCONEL 600 resulted in significant Jc loss, whereas Ni80-Cr caused little or no Jc loss; however, all of them formed chromium oxide that subsequently reacted with silver, creating cracks in the silver sheath. We found that Fe-Cr-Al did not show significant reactions with Ag/Bi-2212 strands. Scanning electron microscopy (SEM) and energy dispersive x-ray (EDS) examinations revealed that the Fe-Cr-Al alloy benefits from the formation of a uniform, crack-free, continuous alumina layer on its surface that does not react with Ag and that helps minimize the Cu loss found with INCONEL X750 and INCONEL 600. We fabricated prototype 6-around-1 cables with six Bi-2212 strands twisted and transposed around an Fe-Cr-Al alloy core coated with TiO2. After standard 1 bar melt processing, the cable retained 100% of the total current-carrying capability of its strands, and, after a 10 bar overpressure processing, the cable reached a total current of 1025 A at 4.2 K and 10 T. Tensile tests showed that Fe-Cr-Al becomes brittle after being cooled to 4.2 K, whereas INCONEL X750 remains ductile and retains a modulus of 183 GPa. We proposed new cable designs that take advantage of the chemical compatibility of Fe-Cr-Al and high strength of INCONEL X750 for various high-field magnet applications.


Superconductor Science and Technology | 2011

Routine characterization of 3D profiles of SRF cavity defects using replica techniques

M Ge; Genfa Wu; D Burk; J Ozelis; Elvin Harms; Dmitri Sergatskov; D Hicks; Lance Cooley

Recent coordination of thermometry with optical images has shown that obvious defects at specific locations produce heat or even quench superconducting radio-frequency (SRF) cavities, imposing a significant limit on the overall accelerating gradient produced by the cavity. Characterization of the topography at such locations provides clues about how the defects originated, from which schemes for their prevention might be devised. Topographic analyses also provide understanding of the electromagnetic mechanism by which defects limit cavity performance, from which viability of repair techniques might be assessed. In this paper we discuss how a variety of two-component silicone-based room-temperature vulcanizing agents can be routinely used to make replicas of the cavity surface and extract topographic details of cavity defects. Previously, this level of detail could only be obtained by cutting suspect regions from the cavity, thus destroying the cavity. We show 3D profiles extracted from several different 1.3 GHz cavities. The defect locations, which were all near cavity welds, compelled us to develop extraction techniques for both equator and iris welds as well as from deep inside long 9-cell cavities. Profilometry scans of the replicas yield micrometre-scale information, and we describe various curious features, such as small peaks at the bottoms of pits, which were not apparent in previous optical inspections. We also discuss contour information in terms of electromagnetic mechanisms proposed by others for local cavity heating. We show that production of the replica followed by high-pressure rinsing does not adversely affect the cavity RF performance.


Journal of Applied Physics | 2011

Electron energy-loss spectroscopy study of metallic Nb and Nb oxides

Runzhe Tao; Ruzica Todorovic; Jingjing Liu; Randall J. Meyer; Andrew Arnold; Weronika Walkosz; Peter Zapol; Alexander Romanenko; Lance Cooley; Robert F. Klie

We present a series of electron energy-loss spectroscopy (EELS) studies on niobium (Nb) and its oxides (NbO, NbO2, and Nb2O5) to develop a reliable method for quantifying the oxidation state in mixed niobium oxide thin films. Our approach utilizes a combination of transmission electron microscopy and EELS experiments with density functional theory calculations to distinguish between metallic niobium and the different niobium oxides. More specifically, the differences in the near-edge fine-structure of the Nb M-edge and O K-edge provide sufficient information to determine the valence state of niobium. Based on these observed changes in the core-loss edges, we propose a linear relationship that correlates the peak positions in the Nb M- and O K-edges with the Nb valence state. The methods developed in this paper are also applied to ultrathin niobium oxide films to examine the effects of low-temperature baking on the films’ oxidation states.


IEEE Transactions on Applied Superconductivity | 2011

Impact of Forming, Welding, and Electropolishing on Pitting and the Surface Finish of SRF Cavity Niobium

Lance Cooley; D. Burk; C. Cooper; N. Dhanaraj; M. Foley; D. Ford; K Gould; D. Hicks; R. Novitski; A. Romanenko; R. Schuessler; C. Thompson; G. Wu

A broad range of coupon electropolishing experiments are described to ascertain the mechanism(s) by which large defects are formed near superconducting radio-frequency (SRF) cavity welds. Cold-worked vs. annealed metal, the presence of a weld, and several variations of electropolishing (EP) parameters were considered. Pitting is strongly promoted by cold work and agitation of the EP solution. Welding also promotes pitting, but less so compared with the other factors above. Temperature increase during EP did not strongly affect glossiness or pitting, but the reduced viscosity made the electrolyte more susceptible to agitation. The experiments suggest that several factors that are rather benign alone are combined by the cavity forming, welding, and processing sequence to promote the formation of defects such as pits. Process changes to mitigate these risks are discussed.


IEEE Transactions on Applied Superconductivity | 2009

Quench-Limited SRF Cavities: Failure at the Heat-Affected Zone

Mark Champion; Lance Cooley; C. M. Ginsburg; Dmitri Sergatskov; Rongli L. Geng; Hitoshi Hayano; Yoshihisa Iwashita; Yujiro Tajima

With the recent progress in surface cleaning, the performance of superconducting RF cavities is mostly limited by a quench. It is important to understand the nature of the quench origin. In a common SRF cavity design the RF magnetic field is concentrated near the equatorial weld of the cavity. This weld has long been the major suspect in forming a surface defect, either as an impurity or in an increased surface roughness, that eventually gives rise to a quench. We used surface mounted thermometers to obtain a temperature map of the cavity in the quench region. A high temperature, temporal, and spatial resolution of the thermometry system allows us to pinpoint the quench origin with an accuracy of a few millimeters. We found that the hot-spot precursor forms in the weld heat-affected area rather than in the melted zone. The high resolution optical inspection found surface defects in exactly the same locations as the temperature mapping system. We will describe the measurement techniques and discuss possible scenarios of formation of these defects.


Applied Physics Letters | 2008

Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment

Thomas Proslier; J. F. Zasadzinski; J. Moore; Michael Pellin; Jeffrey W. Elam; Lance Cooley; C. Antoine; J. Norem; K. E. Gray

A method to treat the surface of Nb is described, which potentially can improve the performance of superconducting rf cavities. We present tunneling and x-ray photoemission spectroscopy measurements at the surface of cavity-grade niobium samples coated with a 3 nm alumina overlayer deposited by atomic layer deposition. The coated samples baked in ultrahigh vacuum at low temperature degraded superconducting surface. However, at temperatures above 450 C, the tunneling conductance curves show significant improvements in the superconducting density of states compared with untreated surfaces.


Superconductor Science and Technology | 2010

Model for initiation of quality factor degradation at high accelerating fields in superconducting radio-frequency cavities

A Dzyuba; Alexander Romanenko; Lance Cooley

A model for the onset of the reduction in superconducting radio-frequency (SRF) cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Since magnetic fields at the cavity equator are tied to accelerating electric fields by a simple geometric factor, the onset of magnetic flux penetration determines the onset of Q-drop. We consider breakdown of the surface barrier at triangular grooves to predict the magnetic field of first flux penetration Hpen. Such defects were argued to be the worst case by Buzdin and Daumens (1998 Physica?C?294?257), whose approach, moreover, incorporates both the geometry of the groove and local contamination via the Ginzburg?Landau parameter ?. Since previous Q-drop models focused on either topography or contamination alone, the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hpen when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. Still lower Hpen was predicted when both effects were combined, i.e.?contamination should exacerbate the negative effects of roughness and vice?versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of ?. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~ 20%, and that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was extended to fit cavity test data, which indicated that reduction of the superconducting gap by contaminants may also play a role in Q-drop.

Collaboration


Dive into the Lance Cooley's collaboration.

Top Co-Authors

Avatar

Robert F. Klie

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

A. Ghosh

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Runzhe Tao

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

J. F. Zasadzinski

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Proslier

Illinois Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kathleen Amm

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Peter Zapol

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge