Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lanchun Ni is active.

Publication


Featured researches published by Lanchun Ni.


Biomaterials | 2012

BDNF blended chitosan scaffolds for human umbilical cord MSC transplants in traumatic brain injury therapy.

Wei Shi; Dekang Nie; Guohua Jin; Weiwei Chen; Liang Xia; Xiujie Wu; Xing Su; Xide Xu; Lanchun Ni; Xianan Zhang; Xinhua Zhang; Jian Chen

This study tested the cytotoxicity of a BDNF blended chitosan scaffold with human umbilical cord mesenchymal stem cells (hUC-MSCs), and the in vitro effect of BDNF blended chitosan scaffolds on neural stem cell differentiation with the aim of contributing alternative methods in tissue engineering for the treatment of traumatic brain injury (TBI). The chitosan scaffold based on immobilization of BDNF by genipin (GP) as a crosslinking agent referred to hereafter as a CGB scaffold was prepared by freezing-drying technique. hUC-MSCs were co-cultured with the CGB scaffold. Fluorescent nuclear staining (Hoechst 33342) was employed to determine the attachment of the hUC-MSCs to CGB scaffolds on the 1st, 3rd, 7th and 10th day of co-culture. The viability of hUC-MSCs adhered to the CGB scaffold was determined by digesting with 0.25% trypsin and evaluating with the cell counting kit-8 (CCK-8). Prior to this, the diameter and porosity of CGB scaffolds were measured. The amount of BDNF released from CGB over a 30 day period was determined by ELISA. Finally, we investigated whether the released BDNF can induce NSC to differentiate into neurons. There were no significant differences in diameter and porosity of individual CGB scaffolds (P > 0.05). There were on average more cells on the CGB scaffold on the first day than on any other day sampled (P < 0.05). The CGB scaffolds released BDNF in a uniform profile, whereas the CB scaffolds only released BDNF during the first 3 days. BDNF released from CGB scaffold promoted neuronal differentiation of NSCs and led to significant differences in differentiation rate and average neuron perimeter compared with the control group. The results of this study demonstrate that CGB scaffolds are biocompatible with hUC-MSCs and that granular CGB scaffolds covered with hUC-MSCs are expected to generate new advances for future treatment of traumatic brain injury.


Tumor Biology | 2015

Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation

Jinlong Shi; Baolan Sun; Wei Shi; Hao Zuo; Daming Cui; Lanchun Ni; Jian Chen

Gliomas are the most malignant and aggressive primary brain tumor in adults. Despite concerted efforts to improve therapies, their prognosis remains very poor. Isocitrate dehydrogenase 1 (IDH1) mutations have been discovered frequently in glioma patients and are strongly correlated with improved survival. However, the effect of IDH1 mutations on the chemosensitivity of gliomas remains unclear. In this study, we generated clonal U87 and U251 glioma cell lines overexpressing the R132H mutant protein (IDH1-R132H). Compared with control cells and cells overexpressing IDH wild type (IDH1-WT), both types of IDH1-R132H cells were more sensitive to temozolomide (TMZ) and cis-diamminedichloroplatinum (CDDP) in a time- and dose-dependent manner. The IDH1-R132H-induced higher chemosensitivity was associated with nicotine adenine disphosphonucleotide (NADPH), glutathione (GSH) depletion, and reactive oxygen species (ROS) generation. Accordingly, this IDH1-R132H-induced growth inhibition was effectively abrogated by GSH in vitro and in vivo. Our study provides direct evidence that the improved survival in patients with IDH1-R132H tumors may partly result from the effects of the IDH1-R132H protein on chemosensitivity. The primary cellular events associated with improved survival are the GSH depletion and increased ROS generation.


Neurological Sciences | 2014

An IDH1 mutation inhibits growth of glioma cells via GSH depletion and ROS generation

Jinlong Shi; Hao Zuo; Lanchun Ni; Liang Xia; Longxiang Zhao; Mingjie Gong; Dekang Nie; Peipei Gong; Daming Cui; Wei Shi; Jian Chen

The isocitrate dehydrogenase 1 (IDH1) gene mutation occurs frequently in glioma. While some studies have demonstrated that IDH1 mutations are associated with prolonged survival, the mechanism remains unclear. In this study, we found that growth was significantly inhibited in glioma cells overexpressing the mutated IDH1 gene. Furthermore, these cells were characterized by decreased intracellular NADPH levels accompanied by glutathione (GSH) depletion and reactive oxygen species (ROS) generation. Moreover, the increased apoptosis and the decreased proliferation were found in the glioma cells overexpressing the mutant IDH1 gene. Accordingly, our study demonstrates that using H2O2-regulated mutant IDH1 glioma cells could obviously increase the inhibition of cell growth; nevertheless, GSH had the opposite result. Our study provides direct evidence that mutation of IDH1 profoundly inhibits the growth of glioma cells, and we speculate that this is the major factor behind its association with prolonged survival in glioma. Finally, our study indicates that depletion of GSH and generation of ROS are the primary cellular events associated with this mutation.


Journal of Molecular Histology | 2011

Upregulation of p21-activated Kinase 6 in rat brain cortex after traumatic brain injury

Wei Zhao; Jiao Yang; Wei Shi; Xiujie Wu; Bai Shao; Qiyun Wu; Jian Chen; Lanchun Ni

Abstractp21-activated Kinase 6 (PAK6) is a serine/threonine kinase belonging to the p21-activated kinase (PAK) family. PAK kinases are well-known regulators of a wide variety of cellular functions, including regulation of cytoskeleton rearrangement, cell survival, apoptosis and the mitogen-activated protein kinase signaling pathway. To elucidate the expressions and possible functions of PAK6 in central nervous system (CNS) lesion and repair, we performed a traumatic brain injury (TBI) model in adult rats. Western blot analysis revealed that PAK6 level significantly increased at day 3 after damage, and then declined during the following days. Besides, double immunofluorescence staining showed PAK6 was primarily expressed in the neurons and a few of glial cells in the normal group. While after injury, the expression of PAK6 was increased significantly in the astrocytes and neurons, and the astrocytes had largely proliferated. We also examined the expression of proliferating cell nuclear antigen (PCNA) whose change was correlated with the expression of PAK6. Importantly, double immunofluorescence staining revealed that cell proliferation evaluated by PCNA appeared in many PAK6-expressing cells at day 3 after injury. In addition, injury-induced expression of PAK6 was co-labeled by active caspase-3 during neuronal apoptosis after injury. Collectively, we hypothesized PAK6 may play important roles in CNS pathophysiology after TBI and further research is needed to have a good understanding of its function and mechanism.


Neurochemical Research | 2011

Traumatic Brain Injury Induces an Up-Regulation of Hs1-Associated Protein X-1 (Hax-1) in Rat Brain Cortex

Wei Shi; Wei Zhao; Aiguo Shen; Bai Shao; Xiujie Wu; Jiao Yang; Lanchun Ni; Qiyun Wu; Jian Chen

HS1-associated protein X-1 (Hax-1) is an intracellular protein with anti-apoptotic properties that, in addition to suppressing cell death by inhibiting the activation of initiator caspase-9 and death caspase-3, is involved in an increasing number of signaling cascades. However, its expression and function in the central nervous system lesion are still unclear. In this study, we performed a traumatic brain injury (TBI) model in adult rats and investigated the dynamic changes of Hax-1 expression in the brain cortex. Western blot and immunohistochemistry analysis revealed that Hax-1 was present in normal brain. It gradually increased, reached a peak at day 3 after TBI, and then declined during the following days. Double immunofluorescence staining showed that Hax-1 immunoreactivity (IR) was found in neurons, but not astrocytes and microglia. Moreover, the 3rd day post injury was the apoptotic peak implied by the alteration of caspase-3, Bcl-2 and TUNEL. All these results suggested that Hax-1 may be involved in the pathophysiology of TBI and further research is needed to have a good understanding of its function and mechanism.


Oncology Reports | 2013

OCT4 is epigenetically regulated by DNA hypomethylation of promoter and exon in primary gliomas

Jinlong Shi; Wei Shi; Lanchun Ni; Xide Xu; Xing Su; Liang Xia; Feng Xu; Jian Chen; Jianhong Zhu

Glioma is the leading cause of tumor-related mortality in the central nervous system. There is increasing evidence that the self-renewal capacity of cancer cells is critical for the initiation, growth and recurrence of tumors. OCT4 is a transcription factor that plays a key role in regulating the self-renewal ability of embryonic stem cells. DNA methylation is involved in the regulation of OCT4 expression during the development and differentiation of embryonic stem cells and neural stem cells. In the present study, we reported that OCT4 was highly expressed in primary gliomas and its expression levels increased in parallel with pathological grades. BSP analysis showed that the methylation levels of OCT4 gene promoter and exon were significantly reduced in comparison with the normal group and were negatively correlated with OCT4 gene expression in primary gliomas. In vitro, OCT4 gene expression was upregulated following treatment by a demethylation reagent in glioma cell lines. Our findings suggest that OCT4 is epigenetically regulated by DNA hypomethylation in primary gliomas, which may provide evidence for the role of DNA methylation in tumor and may present a new direction for developing more powerful strategies to treat glioma in the clinic.


Journal of Molecular Neuroscience | 2012

Clinical Significance and Prognostic Value of PAX3 Expression in Human Glioma

Jian Chen; Liang Xia; Xiujie Wu; Liqin Xu; Dekang Nie; Jinlong Shi; Xide Xu; Lanchun Ni; Shaoqing Ju; Xinhua Wu; Hui Zhu; Wei Shi

The paired box 3 (PAX3), a crucial transcription factor, is normally expressed during embryonic development and is absent in normal adult human tissues. Deregulated expression of PAX3 has been observed in tumors like rhabdomyosarcoma and melanomas. To assess deregulated PAX3 expression in patients with gliomas, these samples from 57 glioma patients (13 grade I, 16 grade II, 14 grade III, and 14 grade IV tumors) and 10 normal brain specimens acquired from 10 patients undergoing surgery for epilepsy as control were obtained. PAX3 expression was measured by RT-PCR, Western blot, and immunohistochemistry. Survival analyses were performed using the Kaplan–Meier method. Association between PAX3 expression, clinicopathological characteristics, and patients’ survival were analyzed by using SPSS 17.0. We found that the expression of PAX3 was upregulated in high-grade glioma tissues compared with that in low-grade and normal brain tissues, and increased with ascending tumor World Health Organization (WHO) grades (P = 0.001). The increased PAX3 expression in gliomas was significantly associated with higher WHO grade (P = 0.021) and poorer disease-specific survival of patients (P = 0.001). Our results suggested that PAX3 might be an intrinsic regulator of progression in glioma cells and it might serve as a prognostic factor for this dismal disease.


Journal of NeuroInterventional Surgery | 2013

Tentorial dural arteriovenous fistula manifesting as contralateral trigeminal neuralgia: resolution after transarterial Onyx embolization

Xiaojian Lu; Xuanfeng Qin; Lanchun Ni; Jian Chen; Feng Xu

Tentorial dural arteriovenous fistula (DAVF) as a cause of trigeminal neuralgia is extremely rare. Although less than 10 cases have been reported in the literature, all cases presented with ipsilateral trigeminal neuralgia. Here we report a unique case of tentorial DAVF manifesting as contralateral trigeminal neuralgia. A 58-year-old man presented with right-sided trigeminal neuralgia. Cerebral angiography revealed a left tentorial DAVF and the MR imaging demonstrated a variceal venous dilatation occupying the left lateral pontine cistern and multiple venous flow voids adjacent to the right trigeminal nerve root entry zone. Transarterial Onyx embolization resulted in near complete obliteration of the fistula with immediate resolution of facial pain. The patient remains symptom free and without evidence of recurrence during 9 months of follow-up. Transarterial Onyx embolization may be an effective treatment modality for such an usual case.


Journal of Molecular Histology | 2013

Up-regulation of ski-interacting protein in rat brain cortex after traumatic brain injury.

Jian Chen; Hui Mao; HuiFei Zou; Wei Jin; Lanchun Ni; Kaifu Ke; Maohong Cao; Wei Shi

SKIP (Ski-interacting protein), is part of nuclear regulatory complexes and interacts with factors involved in preinitiation, splicing and polyadenylation, potentiates the activity of important transcription factors, involved in an increasing number of signaling cascades. However, its distribution and function in the central nervous system remains poorly understood. In this study, western blot analysis, RT-PCR and immunohistochemistry showed a significant up-regulation of SKIP in ipsilateral peritrauma cortex compared with the sham group. Immunofluorescent labeling indicated that SKIP was localized striking in the neurons, but not astrocytes and oligodendrocytes; co-localization of SKIP and active caspase-3 and PCNA in the ipsilateral cortex. In addition, the expression patterns of active caspase-3 and PCNA were parallel with that of SKIP. Based on our data, we speculated that SKIP might play an important role in neuronal apoptosis following TBI; and might provide a basis for the further study on its role in cell cycle re-entry in traumatic brain injury.


Journal of Molecular Neuroscience | 2013

The Expression Patterns of Septin-9 After Traumatic Brain Injury in Rat Brain

Hui Mao; Jiao Liu; Wei Shi; Qingfeng Huang; Xide Xu; Lanchun Ni; Feihui Zou; Jinlong Shi; Debao Li; Yonghua Liu; Jian Chen

Septins are a novel group of GTPases, which are first identified in yeast and more recently found in a wide range of animal cells. Septin-9, a novel septin family member, is expressed ubiquitously and involved in an increasing number of signaling cascades. However, information regarding its distribution and possible function in the central nervous system (CNS) is limited. In this study, western blot analysis and immunohistochemistry showed a significant upregulation of Septin-9 in the ipsilateral peritrauma cortex compared with the sham group. Immunofluorescent labeling indicated that Septin-9 was localized strikingly in the cytoplasm of neurons, but not astrocytes and oligodendrocytes. The co-localization of Septin-9 and active caspase-3 was also examined in the ipsilateral cortex. In addition, the expression patterns of active caspase-3 were parallel with that of Septin-9. Quantitative real-time RT-PCR also was used to detect Seption-9 mRNA level. Based on our data, we speculated that traumatic brain injury may be a stimulus to induce the Septin-9 expression, and Septin-9 might play an important role in the pathophysiology process in the CNS after traumatic brain injury. Taken together, this is the first description of Septin-9 expression changes during the central nervous system lesion and repair, but further studies are needed to understand the cell signaling pathway which can direct the exact role of Septin-9 following traumatic brain injury.

Collaboration


Dive into the Lanchun Ni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge