Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Landino Allegri is active.

Publication


Featured researches published by Landino Allegri.


Nature Genetics | 2011

Genome-wide association study identifies susceptibility loci for IgA nephropathy

Ali G. Gharavi; Krzysztof Kiryluk; Murim Choi; Yifu Li; Ping Hou; Jingyuan Xie; Simone Sanna-Cherchi; Clara J. Men; Bruce A. Julian; Robert J. Wyatt; Jan Novak; John Cijiang He; Haiyan Wang; Jicheng Lv; Li Zhu; Weiming Wang; Zhaohui Wang; Kasuhito Yasuno; Murat Gunel; Shrikant Mane; Sheila Umlauf; Irina Tikhonova; Isabel Beerman; Silvana Savoldi; Riccardo Magistroni; Gian Marco Ghiggeri; Monica Bodria; Francesca Lugani; Pietro Ravani; Claudio Ponticelli

We carried out a genome-wide association study of IgA nephropathy, a major cause of kidney failure worldwide. We studied 1,194 cases and 902 controls of Chinese Han ancestry, with targeted follow up in Chinese and European cohorts comprising 1,950 cases and 1,920 controls. We identified three independent loci in the major histocompatibility complex, as well as a common deletion of CFHR1 and CFHR3 at chromosome 1q32 and a locus at chromosome 22q12 that each surpassed genome-wide significance (P values for association between 1.59 × 10−26 and 4.84 × 10−9 and minor allele odds ratios of 0.63–0.80). These five loci explain 4–7% of the disease variance and up to a tenfold variation in interindividual risk. Many of the alleles that protect against IgA nephropathy impart increased risk for other autoimmune or infectious diseases, and IgA nephropathy risk allele frequencies closely parallel the variation in disease prevalence among Asian, European and African populations, suggesting complex selective pressures.


Kidney International | 2009

Renal outcome in patients with congenital anomalies of the kidney and urinary tract

Simone Sanna-Cherchi; Pietro Ravani; Valentina Corbani; Stefano Parodi; Riccardo Haupt; Giorgio Piaggio; Maria L Degli Innocenti; Danio Somenzi; Antonella Trivelli; Gianluca Caridi; Claudia Izzi; Francesco Scolari; Girolamo Mattioli; Landino Allegri; Gian Marco Ghiggeri

Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) are a major cause of morbidity in children. We measured the risk of progression to end-stage renal disease in 312 patients with CAKUT preselected for the presence of anomalies in kidney number or size. A model of dialysis-free survival from birth was established as a function of the renal CAKUT categories of solitary kidney; unilateral and bilateral hypodysplasia; renal hypodysplasia associated with posterior urethral valves; and multicystic and horseshoe kidney. Cox regression analysis took into account the concomitant presence of vesicoureteral reflux, year of diagnosis, and time-varying values of serum creatinine, proteinuria, and hypertension. By 30 years of age, 58 patients had started dialysis, giving a yearly incidence of 0.023 over a combined 2474 patient risk years. The risk for dialysis was significantly higher for patients with a solitary kidney or with renal hypodysplasia associated with posterior urethral valves (hazard ratios of 2.43 and 5.1, respectively) compared to patients with unilateral or bilateral renal hypodysplasia, or multicystic or horseshoe kidney, and was independent of other prognostic factors. Our study shows that sub-clinical defects of the solitary kidney may be responsible for a poorer prognosis compared to more benign forms of CAKUT. Prospective studies are needed to validate these results.


Journal of The American Society of Nephrology | 2010

Autoimmunity in Membranous Nephropathy Targets Aldose Reductase and SOD2

Marco Prunotto; Maria Luisa Carnevali; Giovanni Candiano; Corrado Murtas; Maurizio Bruschi; Emilia Corradini; Antonella Trivelli; Alberto Magnasco; Andrea Petretto; Laura Santucci; Silvia Mattei; Rita Gatti; Francesco Scolari; Peter F. Kador; Landino Allegri; Gian Marco Ghiggeri

Glomerular targets of autoimmunity in human membranous nephropathy are poorly understood. Here, we used a combined proteomic approach to identify specific antibodies against podocyte proteins in both serum and glomeruli of patients with membranous nephropathy (MN). We detected specific anti-aldose reductase (AR) and anti-manganese superoxide dismutase (SOD2) IgG(4) in sera of patients with MN. We also eluted high titers of anti-AR and anti-SOD2 IgG(4) from microdissected glomeruli of three biopsies of MN kidneys but not from biopsies of other glomerulonephritides characterized by IgG deposition (five lupus nephritis and two membranoproliferative glomerulonephritis). We identified both antigens in MN biopsies but not in other renal pathologies or normal kidney. Confocal and immunoelectron microscopy (IEM) showed co-localization of anti-AR and anti-SOD2 with IgG(4) and C5b-9 in electron-dense podocyte immune deposits. Preliminary in vitro experiments showed an increase of SOD2 expression on podocyte plasma membrane after treatment with hydrogen peroxide. In conclusion, our data support AR and SOD2 as renal antigens of human MN and suggest that oxidative stress may drive glomerular SOD2 expression.


American Journal of Human Genetics | 2012

Copy-Number Disorders Are a Common Cause of Congenital Kidney Malformations

Simone Sanna-Cherchi; Krzysztof Kiryluk; Katelyn E. Burgess; Monica Bodria; Matthew Sampson; Dexter Hadley; Shannon N. Nees; Miguel Verbitsky; Brittany J. Perry; Roel Sterken; Vladimir J. Lozanovski; Anna Materna-Kiryluk; Cristina Barlassina; Akshata Kini; Valentina Corbani; Alba Carrea; Danio Somenzi; Corrado Murtas; Nadica Ristoska-Bojkovska; Claudia Izzi; Beatrice Bianco; Marcin Zaniew; Hana Flögelová; Patricia L. Weng; Nilgun Kacak; Stefania Giberti; Maddalena Gigante; Adela Arapović; Kristina Drnasin; Gianluca Caridi

We examined the burden of large, rare, copy-number variants (CNVs) in 192 individuals with renal hypodysplasia (RHD) and replicated findings in 330 RHD cases from two independent cohorts. CNV distribution was significantly skewed toward larger gene-disrupting events in RHD cases compared to 4,733 ethnicity-matched controls (p = 4.8 × 10(-11)). This excess was attributable to known and novel (i.e., not present in any database or in the literature) genomic disorders. All together, 55/522 (10.5%) RHD cases harbored 34 distinct known genomic disorders, which were detected in only 0.2% of 13,839 population controls (p = 1.2 × 10(-58)). Another 32 (6.1%) RHD cases harbored large gene-disrupting CNVs that were absent from or extremely rare in the 13,839 population controls, identifying 38 potential novel or rare genomic disorders for this trait. Deletions at the HNF1B locus and the DiGeorge/velocardiofacial locus were most frequent. However, the majority of disorders were detected in a single individual. Genomic disorders were detected in 22.5% of individuals with multiple malformations and 14.5% of individuals with isolated urinary-tract defects; 14 individuals harbored two or more diagnostic or rare CNVs. Strikingly, the majority of the known CNV disorders detected in the RHD cohort have previous associations with developmental delay or neuropsychiatric diseases. Up to 16.6% of individuals with kidney malformations had a molecular diagnosis attributable to a copy-number disorder, suggesting kidney malformations as a sentinel manifestation of pathogenic genomic imbalances. A search for pathogenic CNVs should be considered in this population for the diagnosis of their specific genomic disorders and for the evaluation of the potential for developmental delay.


Clinical Journal of The American Society of Nephrology | 2012

Coexistence of Different Circulating Anti-Podocyte Antibodies in Membranous Nephropathy

Corrado Murtas; Maurizio Bruschi; Giovanni Candiano; Gabriella Moroni; Riccardo Magistroni; Andrea Magnano; Francesca Bruno; Antonella Radice; Luciana Furci; Lucia Argentiero; Maria Luisa Carnevali; Piergiorgio Messa; Francesco Scolari; Renato Alberto Sinico; Loreto Gesualdo; Fernando C. Fervenza; Landino Allegri; Pietro Ravani; Gian Marco Ghiggeri

BACKGROUND AND OBJECTIVES The discovery of different podocyte autoantibodies in membranous nephropathy (MN) raises questions about their pathogenetic and clinical meaning. This study sought to define antibody isotypes and correlations; to compare levels in MN, other glomerulonephritides, and controls; and to determine their association with clinical outcomes. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Serum IgG(1), IgG(3), and IgG(4) against aldose reductase (AR), SOD2, and α-enolase (αENO) were measured at diagnosis in 186 consecutive MN patients, in 96 proteinuric controls (36 with FSGS, and 60 with IgA nephropathy), and in 92 healthy people recruited in four Italian nephrology units. Anti-phospholipase A2 receptor (PLA2r) and anti-neutral endopeptidase (NEP) IgG(4) were titrated in the same specimens. Association with 1-year follow-up clinical parameters was studied in 120 patients. RESULTS IgG(4) was the most common isotype for all antibodies; IgG(1) and IgG(3) were nearly negligible. IgG(4) levels were positive in a significant proportion of MN patients (AR, 34%; SOD2, 28%; αENO, 43%). Antibody titers were higher in MN than in healthy and pathologic controls (P<0.005). Anti-NEP IgG(4) did not differ from normal controls (P=0.12). Anti-PLA2r IgG(4) was detected in 60% of patients and correlated with anti-AR, anti-SOD2, and anti-αENO IgG(4) (P<0.001). In MN patients negative for the whole antibody panel (20%), 1-year proteinuria was lower compared with patients with at least one antibody positivity (P<0.05). CONCLUSIONS Our data suggest that IgG(4) is the prevalent isotype for antibodies against cytoplasmic antigens of podocytes (AR, SOD2, αENO). Their levels were higher than in other proteinuric glomerulonephritides and in normal controls and were correlated with anti-PLA2r. Only baseline negativity for all known antibodies predicted lower 1-year proteinuria.


Journal of The American Society of Nephrology | 2010

Addition of Azathioprine to Corticosteroids Does Not Benefit Patients with IgA Nephropathy

Claudio Pozzi; Simeone Andrulli; Antonello Pani; Patrizia Scaini; Lucia Del Vecchio; Giambattista Fogazzi; Bruno Vogt; Vincenzo De Cristofaro; Landino Allegri; Lino Cirami; Aldo Deni Procaccini; Francesco Locatelli

The optimal treatment for IgA nephropathy (IgAN) remains unknown. Some patients respond to corticosteroids, suggesting that more aggressive treatment may provide additional benefit. We performed a randomized, multicenter, controlled trial to determine whether adding azathioprine to steroids improves renal outcome. We randomly assigned 207 IgAN patients with creatinine ≤2.0 mg/dl and proteinuria ≥1.0 g/d to either (1) a 3-day pulse of methylprednisolone in months 1, 3, and 5 in addition to both oral prednisone 0.5 mg/kg every other day and azathioprine 1.5 mg/kg per day for 6 months (n = 101, group 1) or (2) steroids alone on the same schedule (n = 106, group 2). The primary outcome was renal survival (time to 50% increase in plasma creatinine from baseline); secondary outcomes were changes in proteinuria over time and safety. After a median follow-up of 4.9 years, the primary endpoint occurred in 13 patients in group 1 (12.9%, 95% CI 7.5 to 20.9%) and 12 patients in group 2 (11.3%, CI 6.5 to 18.9%) (P = 0.83). Five-year cumulative renal survival was similar between groups (88 versus 89%; P = 0.83). Multivariate Cox regression analysis revealed that female gender, systolic BP, number of antihypertensive drugs, ACE inhibitor use, and proteinuria during follow-up predicted the risk of reaching the primary endpoint. Treatment significantly decreased proteinuria from 2.00 to 1.07 g/d during follow-up (P < 0.001) on average, with no difference between groups. Treatment-related adverse events were more frequent among those receiving azathioprine. In summary, adding low-dose azathioprine to corticosteroids for 6 months does not provide additional benefit to patients with IgAN and may increase the risk for adverse events.


The New England Journal of Medicine | 2013

Mutations in DSTYK and Dominant Urinary Tract Malformations

Simone Sanna-Cherchi; R.V. Sampogna; Natalia Papeta; Katelyn E. Burgess; Shannon N. Nees; Brittany J. Perry; Murim Choi; Monica Bodria; Yuanli Liu; Patricia L. Weng; Vladimir J. Lozanovski; Miguel Verbitsky; F. Lugani; Roel Sterken; Neal Paragas; Gianluca Caridi; Alba Carrea; M. Dagnino; Anna Materna-Kiryluk; G. Santamaria; C. Murtas; Nadica Ristoska-Bojkovska; Claudia Izzi; Nilgun Kacak; Beatrice Bianco; S. Giberti; Maddalena Gigante; G. Piaggio; Loreto Gesualdo; D. Kosuljandic Vukic

BACKGROUND Congenital abnormalities of the kidney and the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and the etiologic factors are poorly understood. METHODS We performed genomewide linkage analysis and whole-exome sequencing in a family with an autosomal dominant form of congenital abnormalities of the kidney or urinary tract (seven affected family members). We also performed a sequence analysis in 311 unrelated patients, as well as histologic and functional studies. RESULTS Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single, rare, deleterious variant within these linkage intervals, a heterozygous splice-site mutation in the dual serine-threonine and tyrosine protein kinase gene (DSTYK). This variant, which resulted in aberrant splicing of messenger RNA, was present in all affected family members. Additional, independent DSTYK mutations, including nonsense and splice-site mutations, were detected in 7 of 311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in developmental defects in multiple organs, which suggested loss of fibroblast growth factor (FGF) signaling. Consistent with this finding is the observation that DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated phosphorylation of extracellular-signal-regulated kinase (ERK), the principal signal downstream of receptor tyrosine kinases. CONCLUSIONS We detected independent DSTYK mutations in 2.3% of patients with congenital abnormalities of the kidney or urinary tract, a finding that suggests that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling. (Funded by the National Institutes of Health and others.).


Kidney International | 2012

NGAL (Lcn2) monomer is associated with tubulointerstitial damage in chronic kidney disease

Thomas L. Nickolas; Catherine S. Forster; Meghan E. Sise; Nicholas Barasch; David Sola-Del Valle; Melanie Viltard; Charles Buchen; Shlomo Kupferman; Maria Luisa Carnevali; Michael Bennett; Silvia Mattei; Achiropita Bovino; Lucia Argentiero; Andrea Magnano; Prasad Devarajan; Kiyoshi Mori; Hediye Erdjument-Bromage; Paul Tempst; Landino Allegri; Jonathan Barasch

The rate of progression of chronic kidney disease (CKD) is difficult to predict using single measurements of serum creatinine or proteinuria. On the other hand, documented tubulointerstitial disease presages worsening CKD, but kidney biopsy is not practical for routine use and generally does not sample the tubulointerstitial compartment of the medulla. Perhaps a urine test that correlates with specific histological findings may serve as a surrogate for the kidney biopsy. Here we compared both immunoblot analysis (under non-reducing conditions) and a commercially available monomer immunoassays of Neutrophil Gelatinase Associated Lipocalin (NGAL) with pathological changes found in kidney biopsies, to determine whether specific histological characteristics associated with a specific NGAL species. We found that the urine of patients with advanced CKD contained NGAL monomers as well as higher molecular weight complexes containing NGAL, identified by MALDI-TOF/TOF mass spectroscopy. The NGAL monomer significantly correlated with glomerular filtration rate, interstitial fibrosis and tubular atrophy. Hence, specific assays of the NGAL monomer implicate histology associated with progressive, severe CKD.The type and the extent of tissue damage inform the prognosis of chronic kidney disease (CKD), but kidney biopsy is not a routine test. Urinary tests that correlate with specific histological findings might serve as surrogates for the kidney biopsy. We used immunoblots and ARCHITECT-NGAL assays to define the immunoreactivity of urinary neutrophil gelatinase-associated lipocalin (NGAL) in CKD, and we used mass spectroscopy to identify associated proteins. We analyzed kidney biopsies to determine whether specific pathological characteristics associated with the monomeric NGAL species. Advanced CKD urine contained the NGAL monomer as well as novel complexes of NGAL. When these species were separated, we found a significant correlation between the NGAL monomer and glomerular filtration rate (r=-0.53, P<0.001), interstitial fibrosis (mild vs. severe disease; mean 54 vs. 167 μg uNGAL/g Cr, P<0.01), and tubular atrophy (mild vs. severe disease; mean 54 vs. 164 μg uNGAL/g Cr, P<0.01). Monospecific assays of the NGAL monomer demonstrated a correlation with histology that typifies progressive, severe CKD.


Kidney International | 2011

Exome sequencing identified MYO1E and NEIL1 as candidate genes for human autosomal recessive steroid-resistant nephrotic syndrome

Simone Sanna-Cherchi; Katelyn E. Burgess; Shannon N. Nees; Gianluca Caridi; Patricia L. Weng; Monica Dagnino; Monica Bodria; Alba Carrea; Maddalena Allegretta; Hyunjae R. Kim; Brittany J. Perry; Maddalena Gigante; Lorraine N. Clark; Sergey Kisselev; Daniele Cusi; Loreto Gesualdo; Landino Allegri; Francesco Scolari; Lawrence Shapiro; Carmine Pecoraro; Teresa Palomero; Gian Marco Ghiggeri; Ali G. Gharavi

To identify gene loci associated with steroid-resistant nephrotic syndrome (SRNS), we utilized homozygosity mapping and exome sequencing in a consanguineous pedigree with three affected siblings. High-density genotyping identified three segments of homozygosity spanning 33.6 Mb on chromosomes 5, 10, and 15 containing 296 candidate genes. Exome sequencing identified two homozygous missense variants within the chromosome 15 segment; an A159P substitution in myosin 1E (MYO1E), encoding a podocyte cytoskeletal protein; and an E181K substitution in nei endonuclease VIII-like 1 (NEIL1), encoding a base-excision DNA repair enzyme. Both variants disrupt highly conserved protein sequences and were absent in public databases, 247 healthy controls, and 286 patients with nephrotic syndrome. The MYO1E A159P variant is noteworthy, as it is expected to impair ligand binding and actin interaction in the MYO1E motor domain. The predicted loss of function is consistent with the previous demonstration that Myo1e inactivation produces nephrotic syndrome in mice. Screening 71 additional patients with SRNS, however, did not identify independent NEIL1 or MYO1E mutations, suggesting larger sequencing efforts are needed to uncover which mutation is responsible for the phenotype. Our findings demonstrate the utility of exome sequencing for rapidly identifying candidate genes for human SRNS.


Journal of The American Society of Nephrology | 2009

Urinary NGAL Marks Cystic Disease in HIV-Associated Nephropathy

Neal Paragas; Thomas L. Nickolas; Christina M. Wyatt; Catherine S. Forster; Meghan E. Sise; Susan Morgello; Bernd Jagla; Charles Buchen; Peter Stella; Simone Sanna-Cherchi; Maria Luisa Carnevali; Silvia Mattei; Achiropita Bovino; Lucia Argentiero; Andrea Magnano; Prasad Devarajan; Kai M. Schmidt-Ott; Landino Allegri; Paul E. Klotman; Ali G. Gharavi; Jonathan Barasch

Nephrosis and a rapid decline in kidney function characterize HIV-associated nephropathy (HIVAN). Histologically, HIVAN is a collapsing focal segmental glomerulosclerosis with prominent tubular damage. We explored the expression of neutrophil gelatinase-associated lipocalin (NGAL), a marker of tubular injury, to determine whether this protein has the potential to aid in the noninvasive diagnosis of HIVAN. We found that expression of urinary NGAL was much higher in patients with biopsy-proven HIVAN than in HIV-positive and HIV-negative patients with other forms of chronic kidney disease. In the HIV-transgenic mouse model of HIVAN, NGAL mRNA was abundant in dilated, microcystic segments of the nephron. In contrast, urinary NGAL did not correlate with proteinuria in human or in mouse models. These data show that marked upregulation of NGAL accompanies HIVAN and support further study of uNGAL levels in large cohorts to aid in the noninvasive diagnosis of HIVAN and screen for HIVAN-related tubular damage.

Collaboration


Dive into the Landino Allegri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianluca Caridi

Istituto Giannina Gaslini

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge