Lanfranco Corazzi
University of Perugia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lanfranco Corazzi.
Journal of Experimental Medicine | 2005
Elisabetta Agea; Anna Russano; Onelia Bistoni; Roberta Mannucci; Ildo Nicoletti; Lanfranco Corazzi; Anthony D. Postle; Gennaro De Libero; Steven A. Porcelli; Fabrizio Spinozzi
Plant pollens are an important source of environmental antigens that stimulate allergic responses. In addition to acting as vehicles for foreign protein antigens, they contain lipids that incorporate saturated and unsaturated fatty acids, which are necessary in the reproduction of higher plants. The CD1 family of nonpolymorphic major histocompatibility complex–related molecules is highly conserved in mammals, and has been shown to present microbial and self lipids to T cells. Here, we provide evidence that pollen lipids may be recognized as antigens by human T cells through a CD1-dependent pathway. Among phospholipids extracted from cypress grains, phosphatidyl-choline and phosphatidyl-ethanolamine were able to stimulate the proliferation of T cells from cypress-sensitive subjects. Recognition of phospholipids involved multiple cell types, mostly CD4+ T cell receptor for antigen (TCR)αβ+, some CD4−CD8− TCRγδ+, but rarely Vα24i + natural killer–T cells, and required CD1a+ and CD1d+ antigen presenting cell. The responding T cells secreted both interleukin (IL)-4 and interferon-γ, in some cases IL-10 and transforming growth factor-β, and could provide help for immunoglobulin E (IgE) production. Responses to pollen phospholipids were maximally evident in blood samples obtained from allergic subjects during pollinating season, uniformly absent in Mycobacterium tuberculosis–exposed health care workers, but occasionally seen in nonallergic subjects. Finally, allergic, but not normal subjects, displayed circulating specific IgE and cutaneous weal and flare reactions to phospholipids.
Journal of Neurochemistry | 1983
Mats Sandberg; Lanfranco Corazzi
Tissue slices from the superior colliculi (SC) of the rabbit were superfused and investigated 1 week after unilateral eye removal. Amino acid levels were determined both in the tissue slices and in the medium after chemical depolarisation (56 mM K). The amino acid determinations were done fluorimetrically by precolumn derivation and HPLC separation. Colliculi contralateral to the enucleation exhibited a 16% reduction in glutamate compared with the ipsilateral colliculi. The Ca‐dependent release of glutamate or other amino acids tested was not appreciably affected by enucleation. However, both the total and the Ca‐independent release of glutamate was lower from contralateral SC slices compared with the ipsilateral slices. The results do not favour glutamate as the major optic nerve transmitter in the rabbit, but do not rule out glutamate as a transmitter in a minor population of retinal fibres.
Theriogenology | 2010
E. Mourvaki; R. Cardinali; A. Dal Bosco; Lanfranco Corazzi; C. Castellini
Lipids are the main structural/functional components of the sperm, and their composition may undergo a series of modifications in relation to either physiologic events (capacitation and acrosome reaction) and/or diet. The goals of the current study were (1) to investigate whether a flaxseed (FS) dietary supplementation could affect the lipid and fatty acid profile of sperm subfractions and of prostatic granules (PGs) and (2) to evaluate the effects of dietary FS on rabbit buck semen quality. Accordingly, 20 adult New Zealand White rabbits were fed ad libitum a control diet (CO) or a diet supplemented with 5% extruded FS. Integration of diet with FS, as a consequence of the linolenic acid (C18:3n-3; LNA; 56%), increased the dietary n-3/n-6 ratio and resulted in a substantial rearrangement of sperm fatty acid composition at the subcellular level, mainly of polyunsaturated fatty acid (PUFA)n-3 (8.3% vs. 14.3%, P<0.05). The lipid and fatty acid profiles of sperm tail membrane were the most affected, undergoing the following significant changes: (1) a reduction by half of linoleic acid (C18:2n-6; LA) and docosapentaenoic acid (22:5n-6; DPA), and a reduction of cholesterol (-70%); (2) a concomitant increase of LNA (+65%), docosahexaenoic acid (22:6n-3; DHA; +83%), and of oleic acid (C18:1n-9, +61%). As a consequence, the sperm of FS-fed rabbits had a twice higher n-3/n-6 ratio and phospholipid/cholesterol ratio compared with the control sperm. These changes might have been on the basis of the higher responsiveness to hypo-osmotic solution and, hence, the higher sperm track speed observed for the FS group. Also, the membrane integrity and viability of the LNA-enriched sperm were both improved. On the other hand, the presence of lignans in FS might have accounted for the reduction of sperm cholesterol in the semen of FS-treated rabbits. The responsiveness of sperm to acrosome reaction was not affected by the dietary treatment probably due to supranutritional level of vitamin E and to the higher number of PGs, which are known to play a key role in sperm capacitation. In conclusion, our data showed for the first time that the integration of FS into the rabbit diet may improve sperm quality by modifying the sperm lipid composition and that the sperm subfractions and the PGs respond differently to the FS-induced lipid manipulation.
Journal of Biological Chemistry | 2002
Lucia Piccotti; Cristina Marchetti; Graziella Migliorati; Rita Roberti; Lanfranco Corazzi
Release of cytochrome c, a decrease of membrane potential (Δψm), and a reduction of cardiolipin (CL) of rat brain mitochondria occurred upon incubation in the absence of respiratory substrates. Since CL is critical for mitochondrial functioning, CL enrichment of mitochondria was achieved by fusion with CL liposomes. Fusion was triggered by potassium phosphate at concentrations producing mitochondrial permeability transition pore opening but not cytochrome c release, which was observed only at >10 mm. Cyclosporin A inhibited phosphate-induced CL fusion, whereas Pronase pretreatment of mitochondria abolished it, suggesting that mitochondrial permeability transition pore and protein(s) are involved in the fusion process. Phosphate-dependent fusion was enhanced in respiratory state 3 and influenced by phospholipid classes in the order CL > phosphatidylglycerol (PG) > phosphatidylserine. The probe 10-nonylacridine orange indicated that fused CL had migrated to the inner mitochondrial membrane. In state 3, CL enrichment of mitochondria resulted in a pH decrease in the intermembrane space. Cytofluorimetric analysis of mitochondria stained with 3,3′-diexyloxacarbocyanine iodide and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzymidazolylcarbocyanine iodide showed Δψm increase upon fusion with CL or PG. In contrast, phosphatidylserine fusion required Δψmconsumption, suggesting that Δψm is the driving force in mitochondrial phospholipid importation. Moreover, enrichment with CL and PG brought the low energy mitochondrial population to high Δψm values and prevented phosphate-dependent cytochrome c release.
Molecular and Cellular Biochemistry | 1997
Oliva Camici; Lanfranco Corazzi
Data reported in the literature indicate that lipid movement between intracellular organelles can occur through contacts and close physical association of membranes (Vance, J.E. 1990. J Biol Chem 265: 7248-7256). The advantage of this mechanism is that the direct interaction of membranes provides the translocation event without the involvement of lipid-transport systems. However, pre-requisite for the functioning of this machinery is the presence of protein factors controlling membrane association and fusion. In the present work we have found that liposomes fuse to mitochondria at acidic pH and that the pre-treatment of mitochondria with pronase inhibits the fusogenic activity. Mixing of 14C-phosphatilyserine (PS) labeled liposomes with mitochondria at pH 6.0 results in the translocation of 14C-PS into mitochondria and in its decarboxylation to14 C-phosphatidylethanolamine through the PS decarboxylase activity localized on the outer surface of the inner mitochondrial membrane. Incorporation of 14C-PS is inhibited by the pre-treatment of mitochondria with pronase or with EEDQ, a reagent for the derivatization of the protonated form of carboxylic groups. These results indicate the presence of a protein associated with mitochondria which is able to trigger the fusion of liposomes to the mitochondrial membrane. A partial purification of a mitochondrial fusogenic glycoprotein is described in this work. The activity of the fusogenic protein appears to be dependent on the extent of protonation of the residual carboxylic groups and is influenced by the glucidic moiety, as demonstrated by its interaction with Concanavalin A. The purifed protein is able to promote the recover of the14 C-PS import from liposomes to pronase-treated mitochondria. Therefore, the protein is candidate to be an essential component in the machinery for the mitochondrial import of PS. (Mol Cell Biochem 175: 71–80, 1997)
Journal of Biological Chemistry | 2004
Lara Macchioni; Lanfranco Corazzi; Vincenza Nardicchi; Roberta Mannucci; Cataldo Arcuri; Serena Porcellati; Tito Sposini; Rosario Donato; Gianfrancesco Goracci
Activation of brain mitochondrial phospholipase(s) A2 (PLA2) might contribute to cell damage and be involved in neurodegeneration. Despite the potential importance of the phenomenon, the number, identities, and properties of these enzymes are still unknown. Here, we demonstrate that isolated mitochondria from rat brain cortex, incubated in the absence of respiratory substrates, release a Ca2+-dependent PLA2 having biochemical properties characteristic to secreted PLA2 (sPLA2) and immunoreacting with the antibody raised against recombinant type IIA sPLA2 (sPLA2-IIA). Under identical conditions, no release of fumarase in the extramitochondrial medium was observed. The release of sPLA2 from mitochondria decreases when mitochondria are incubated in the presence of respiratory substrates such as ADP, malate, and pyruvate, which causes an increase of transmembrane potential determined by cytofluorimetric analysis using DiOC6(3) as a probe. The treatment of mitochondria with the uncoupler carbonyl cyanide 3-chlorophenylhydrazone slightly enhances sPLA2 release. The increase of sPLA2 specific activity after removal of mitochondrial outer membrane indicates that the enzyme is associated with mitoplasts. The mitochondrial localization of the enzyme has been confirmed by electron microscopy in U-251 astrocytoma cells and by confocal laser microscopy in the same cells and in PC-12 cells, where the structurally similar isoform type V-sPLA2 has mainly nuclear localization. In addition to sPLA2, mitochondria contain another phospholipase A2 that is Ca2+-independent and sensitive to bromoenol lactone, associated with the outer mitochondrial membrane. We hypothesize that, under reduced respiratory rate, brain mitochondria release sPLA2-IIA that might contribute to cell damage.
Neurochemical Research | 1992
Giuseppe Arienti; Maria Teresa Ramacci; Franco Maccari; Angela Casu; Lanfranco Corazzi
The fluorescence anisotropy (r) of diphenylhexatriene (DPH) was measured in different preparations (bovine spinal cord phosphatidylserine liposomes, rat brain microsomes, liposomes made with rat brain microsomal lipid having different phospholipid:cholesterol ratios) at temperatures ranging from 10° to 55°C. Phosphatidylserine liposomes exhibited an exponential relationship of rversus temperature, whereas the relationship shown by microsomes and liposomes prepared with microsomal lipid extracts was a linear one. The removal of protein and high phospholipid:cholesterol ratios decreased the slope of the lines (fluidity increased), although the intercept was unaffected. This means that differences were better appreciated at high temperatures and were well evident at 37°C. Acetyl-l-carnitine decreased r in rat brain microsomes and in liposomes made with microsomal lipids with different phospholipid:cholesterol ratios. The fluidifying effect of acetyl-l-carnitine was mild but statistically significant and could explain, at least in part, the data reported in the literature of acetyl-l-carnitine acting on some parameters affected by ageing. Besides, acetyl-l-carnitine seemed to oppose the changes of viscosity due to lipid peroxidation, which has been reported to increase in ageing and dementia.l-carnitine shares the properties of its acetyl ester, but only in part.
International Journal of Food Microbiology | 2009
Marta Goretti; Benedetta Turchetti; Morena Buratta; Eva Branda; Lanfranco Corazzi; Ann Vaughan-Martini; Pietro Buzzini
The in vitro antimycotic activity of a purified killer protein (KT4561) secreted by a strain of Williopsis saturnus was tested against 310 yeast strains belonging to 21 food spoilage species of 14 genera (Candida, Debaryomyces, Dekkera, Hanseniaspora, Issatchenkia, Kazachstania, Kluyveromyces, Pichia, Rhodotorula, Saccharomyces, Schizosaccharomyces, Torulaspora, Yarrowia and Zygosaccharomyces). Minimum inhibitory concentration (MIC) determinations showed that over 65% of the target strains were susceptible to concentrations < or = 32 microg/ml of KT4561. Three conventional food-grade antimicrobial agents were used as controls: 41, 33 and 40% of the target strains were sensitive to < or = 512 mg/ml of ethyl 3-hydroxybenzoate (E214), potassium sorbate (E202) or potassium metabisulphite (E224), respectively. The susceptibility of food spoilage yeasts towards KT4561, E214, E202 and E224 was species- and strain-dependent. In most cases KT4561 exhibited MIC values several orders of magnitude lower (100 to 100,000 times) than those observed for E214, E202 and E224. With only a few exceptions, the activity of KT4561 was pH-, ethanol-, glucose- and NaCl-independent. The present study demonstrates the potential of this yeast killer protein as a novel and natural control agent against food spoilage yeasts.
The Journal of Membrane Biology | 2004
Lucia Piccotti; Morena Buratta; Silvia Giannini; Paolo Gresele; Rita Roberti; Lanfranco Corazzi
Factors influencing the release and anchorage of cytochrome c to the inner membrane of brain mitochondria have been investigated. Metabolic activity of mitochondria caused a decrease in the membrane potential Δψm, accompanied by detachment of the protein from the inner membrane. In a model system of cytochrome c reconstituted in cardiolipin (CL) liposomes, phosphate was used to breach the hydrophilic lipid-protein interactions. About 44% cytochrome c was removable when heart CL (80% 18:2n-6) was employed, whereas the remaining protein accounted for the tightly bound conformation characterized by hydrophobic lipid-protein interactions. Cytochrome c release from brain CL liposomes was higher compared to heart CL, consistent with lower polyunsaturated fatty acid content. The release was even higher with CL extracted from metabolically stressed mitochondria, exhibiting more saturated fatty acid profile compared to control (30% vs.17%). Therefore, weakening of the hydrophobic interactions due to saturation of CL may account for the observed cytochrome c release from mitochondria following metabolic stress. Moreover, mitochondria enriched with polyunsaturated CL exhibited higher Δψm, compared to less unsaturated species, suggesting that CL fatty acid composition influences Δψm. Mitochondria incorporated exogenous cytochrome c without protease-sensitive factors or Δψm. The internalized protein anchored to the inner membrane without producing swelling, as monitored by forward and side light scattering, but produced Δψm consumption, suggesting recovery of respiratory activity. The Δψm decrease is ascribed to a selected mitochondrial population containing the incorporated cytochrome c.
International Journal of Immunopathology and Pharmacology | 2004
Lucia Scaringi; Paola Cornacchione; Emira Ayroldi; Lanfranco Corazzi; Enrico Capodicasa; Ruggero Rossi; Pierfrancesco Marconi
We report for the first time a potent apoptotic effect of omeprazole (OM). Apoptosis was induced in Jurkat cells in a time and concentration-dependent mode. Caspase 3 and PARP were rapidly cleaved in response to OM, but apoptosis was only partially inhibited by the caspase 3 inhibitor DEVD-CHO. OM also induced an early lysosomal destabilization which increased progressively and was correlated with a parallel increase in apoptotic cells. The cysteine protease inhibitor E64d gave strong protection against apoptosis thus proving the involvement of lysosomal enzymes in OM-induced apoptosis whereas, it did not impede the caspase 3 cleavage. Instead ZVAD-fmk, a general caspase inhibitor, also able to inhibit cathepsin activity, protected cells completely from OM-induced apoptosis. It therefore seems that both caspases and cysteine cathepsins are involved in the execution stage of OM-induced apoptosis.