Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lani F. Wu is active.

Publication


Featured researches published by Lani F. Wu.


Nature | 2001

Experimental annotation of the human genome using microarray technology.

Daniel D. Shoemaker; Eric E. Schadt; Christopher D. Armour; Yudong He; Philip W. Garrett-engele; P. D. McDonagh; Patrick M. Loerch; Amy Leonardson; Pek Yee Lum; Guy Cavet; Lani F. Wu; Steven J. Altschuler; Seve Edwards; J. King; John S. Tsang; G. Schimmack; J. M. Schelter; J. Koch; M. Ziman; Matthew J. Marton; B. Li; P. Cundiff; T. Ward; John Castle; M. Krolewski; Michael R. Meyer; Mao Mao; Julja Burchard; M. J. Kidd; Hongyue Dai

The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using ‘exon’ and ‘tiling’ arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.


Cell | 2010

Cellular Heterogeneity: Do Differences Make a Difference?

Steven J. Altschuler; Lani F. Wu

A central challenge of biology is to understand how individual cells process information and respond to perturbations. Much of our knowledge is based on ensemble measurements. However, cell-to-cell differences are always present to some degree in any cell population, and the ensemble behaviors of a population may not represent the behaviors of any individual cell. Here, we discuss examples of when heterogeneity cannot be ignored and describe practical strategies for analyzing and interpreting cellular heterogeneity.


Nature Genetics | 2002

Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters

Lani F. Wu; Timothy R. Hughes; Armaity P. Davierwala; Mark D. Robinson; Roland Stoughton; Steven J. Altschuler

Genome sequencing has led to the discovery of tens of thousands of potential new genes. Six years after the sequencing of the well-studied yeast Saccharomyces cerevisiae and the discovery that its genome encodes ∼6,000 predicted proteins, more than 2,000 have not yet been characterized experimentally, and determining their functions seems far from a trivial task. One crucial constraint is the generation of useful hypotheses about protein function. Using a new approach to interpret microarray data, we assign likely cellular functions with confidence values to these new yeast proteins. We perform extensive genome-wide validations of our predictions and offer visualization methods for exploration of the large numbers of functional predictions. We identify potential new members of many existing functional categories including 285 candidate proteins involved in transcription, processing and transport of non-coding RNA molecules. We present experimental validation confirming the involvement of several of these proteins in ribosomal RNA processing. Our methodology can be applied to a variety of genomics data types and organisms.


Cell | 2012

Membrane Tension Maintains Cell Polarity by Confining Signals to the Leading Edge during Neutrophil Migration

Andrew R. Houk; Alexandra Jilkine; Cecile O. Mejean; Rostislav Boltyanskiy; Eric R. Dufresne; Sigurd Angenent; Steven J. Altschuler; Lani F. Wu; Orion D. Weiner

Little is known about how neutrophils and other cells establish a single zone of actin assembly during migration. A widespread assumption is that the leading edge prevents formation of additional fronts by generating long-range diffusible inhibitors or by sequestering essential polarity components. We use morphological perturbations, cell-severing experiments, and computational simulations to show that diffusion-based mechanisms are not sufficient for long-range inhibition by the pseudopod. Instead, plasma membrane tension could serve as a long-range inhibitor in neutrophils. We find that membrane tension doubles during leading-edge protrusion, and increasing tension is sufficient for long-range inhibition of actin assembly and Rac activation. Furthermore, reducing membrane tension causes uniform actin assembly. We suggest that tension, rather than diffusible molecules generated or sequestered at the leading edge, is the dominant source of long-range inhibition that constrains the spread of the existing front and prevents the formation of secondary fronts.


Nature Methods | 2007

Image-based multivariate profiling of drug responses from single cells

Lit-Hsin Loo; Lani F. Wu; Steven J. Altschuler

Quantitative analytical approaches for discovering new compound mechanisms are required for summarizing high-throughput, image-based drug screening data. Here we present a multivariate method for classifying untreated and treated human cancer cells based on ∼300 single-cell phenotypic measurements. This classification provides a score, measuring the magnitude of the drug effect, and a vector, indicating the simultaneous phenotypic changes induced by the drug. These two quantities were used to characterize compound activities and identify dose-dependent multiphasic responses. A systematic survey of profiles extracted from a 100-compound compendium of image data revealed that only 10–15% of the original features were required to detect a compound effect. We report the most informative image features for each compound and fluorescence marker set using a method that will be useful for determining minimal collections of readouts for drug screens. Our approach provides human-interpretable profiles and automatic determination of on- and off-target effects.


PLOS Biology | 2007

An Actin-Based Wave Generator Organizes Cell Motility

Orion D. Weiner; William A. Marganski; Lani F. Wu; Steven J. Altschuler; Marc W. Kirschner

Although many of the regulators of actin assembly are known, we do not understand how these components act together to organize cell shape and movement. To address this question, we analyzed the spatial dynamics of a key actin regulator--the Scar/WAVE complex--which plays an important role in regulating cell shape in both metazoans and plants. We have recently discovered that the Hem-1/Nap1 component of the Scar/WAVE complex localizes to propagating waves that appear to organize the leading edge of a motile immune cell, the human neutrophil. Actin is both an output and input to the Scar/WAVE complex: the complex stimulates actin assembly, and actin polymer is also required to remove the complex from the membrane. These reciprocal interactions appear to generate propagated waves of actin nucleation that exhibit many of the properties of morphogenesis in motile cells, such as the ability of cells to flow around barriers and the intricate spatial organization of protrusion at the leading edge. We propose that cell motility results from the collective behavior of multiple self-organizing waves.


Cell | 2003

A Panoramic View of Yeast Noncoding RNA Processing

Wen Tao Peng; Mark D. Robinson; Sanie Mnaimneh; Nevan J. Krogan; Gerard Cagney; Quaid Morris; Armaity P. Davierwala; Jörg Grigull; Xueqi Yang; Wen Zhang; Nicholas Mitsakakis; Owen Ryan; Nira Datta; Vladimir Jojic; Chris Pal; Veronica Canadien; Dawn Richards; Bryan Beattie; Lani F. Wu; Steven J. Altschuler; Sam T. Roweis; Brendan J. Frey; Andrew Emili; Jack Greenblatt; Timothy R. Hughes

Predictive analysis using publicly available yeast functional genomics and proteomics data suggests that many more proteins may be involved in biogenesis of ribonucleoproteins than are currently known. Using a microarray that monitors abundance and processing of noncoding RNAs, we analyzed 468 yeast strains carrying mutations in protein-coding genes, most of which have not previously been associated with RNA or RNP synthesis. Many strains mutated in uncharacterized genes displayed aberrant noncoding RNA profiles. Ten factors involved in noncoding RNA biogenesis were verified by further experimentation, including a protein required for 20S pre-rRNA processing (Tsr2p), a protein associated with the nuclear exosome (Lrp1p), and a factor required for box C/D snoRNA accumulation (Bcd1p). These data present a global view of yeast noncoding RNA processing and confirm that many currently uncharacterized yeast proteins are involved in biogenesis of noncoding RNA.


Cell | 2007

Endocytosis optimizes the dynamic localization of membrane proteins that regulate cortical polarity

Eugenio Marco; Roland Wedlich-Söldner; Rong Li; Steven J. Altschuler; Lani F. Wu

Diverse cell types require the ability to maintain dynamically polarized membrane-protein distributions through balancing transport and diffusion. However, design principles underlying dynamically maintained cortical polarity are not well understood. Here we constructed a mathematical model for characterizing the morphology of dynamically polarized protein distributions. We developed analytical approaches for measuring all model parameters from single-cell experiments. We applied our methods to a well-characterized system for studying polarized membrane proteins: budding yeast cells expressing activated Cdc42. We found that a balance of diffusion, directed transport, and endocytosis was sufficient for accurately describing polarization morphologies. Surprisingly, the model predicts that polarized regions are defined with a precision that is nearly optimal for measured endocytosis rates and that polarity can be dynamically stabilized through positive feedback with directed transport. Our approach provides a step toward understanding how biological systems shape spatially precise, unambiguous cortical polarity domains using dynamic processes.


Nature | 2008

On the spontaneous emergence of cell polarity.

Steven J. Altschuler; Sigurd Angenent; Yanqin Wang; Lani F. Wu

Diverse cell polarity networks require positive feedback for locally amplifying distributions of signalling molecules at the plasma membrane. Additional mechanisms, such as directed transport or coupled inhibitors, have been proposed to be required for reinforcing a unique axis of polarity. Here we analyse a simple model of positive feedback, with strong analogy to the ‘stepping stone’ model of population genetics, in which a single species of diffusible, membrane-bound signalling molecules can self-recruit from a cytoplasmic pool. We identify an intrinsic stochastic mechanism through which positive feedback alone is sufficient to account for the spontaneous establishment of a single site of polarity. We find that the polarization frequency has an inverse dependence on the number of signalling molecules: the frequency of polarization decreases as the number of molecules becomes large. Experimental observation of polarizing Cdc42 in budding yeast is consistent with this prediction. Our work suggests that positive feedback can work alone or with additional mechanisms to create robust cell polarity.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Characterizing heterogeneous cellular responses to perturbations

Michael D. Slack; Elisabeth D. Martinez; Lani F. Wu; Steven J. Altschuler

Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

Collaboration


Dive into the Lani F. Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satwik Rajaram

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert J. Steininger

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Minna

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yanqin Wang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adam D. Coster

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin Pavie

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chin-Jen Ku

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge