Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lanlan Yu is active.

Publication


Featured researches published by Lanlan Yu.


Nature | 2007

Bv8 regulates myeloid-cell-dependent tumour angiogenesis

Farbod Shojaei; Xiumin Wu; Cuiling Zhong; Lanlan Yu; Xiaohuan Liang; Jenny Yao; Dominique Blanchard; Carlos Bais; Franklin Peale; Nicholas van Bruggen; Calvin Ho; Jed Ross; Martha Tan; Richard A. D. Carano; Y. Gloria Meng; Napoleone Ferrara

Bone-marrow-derived cells facilitate tumour angiogenesis, but the molecular mechanisms of this facilitation are incompletely understood. We have previously shown that the related EG-VEGF and Bv8 proteins, also known as prokineticin 1 (Prok1) and prokineticin 2 (Prok2), promote both tissue-specific angiogenesis and haematopoietic cell mobilization. Unlike EG-VEGF, Bv8 is expressed in the bone marrow. Here we show that implantation of tumour cells in mice resulted in upregulation of Bv8 in CD11b+Gr1+ myeloid cells. We identified granulocyte colony-stimulating factor as a major positive regulator of Bv8 expression. Anti-Bv8 antibodies reduced CD11b+Gr1+ cell mobilization elicited by granulocyte colony-stimulating factor. Adenoviral delivery of Bv8 into tumours was shown to promote angiogenesis. Anti-Bv8 antibodies inhibited growth of several tumours in mice and suppressed angiogenesis. Anti-Bv8 treatment also reduced CD11b+Gr1+ cells, both in peripheral blood and in tumours. The effects of anti-Bv8 antibodies were additive to those of anti-Vegf antibodies or cytotoxic chemotherapy. Thus, Bv8 modulates mobilization of CD11b+Gr1+ cells from the bone marrow during tumour development and also promotes angiogenesis locally.


Cancer Cell | 2009

PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment.

Yongping Crawford; Ian Kasman; Lanlan Yu; Cuiling Zhong; Xiumin Wu; Zora Modrusan; Josh Kaminker; Napoleone Ferrara

Tumor- or cancer-associated fibroblasts (TAFs or CAFs) from different tumors exhibit distinct angiogenic and tumorigenic properties. Unlike normal skin fibroblasts or TAFs from TIB6 tumors that are sensitive to anti-VEGF treatment (TAF-TIB6), TAFs from resistant EL4 tumors (TAF-EL4) can stimulate TIB6 tumor growth even when VEGF is inhibited. We show that platelet-derived growth factor C (PDGF-C) is upregulated in TAFs from resistant tumors. PDGF-C-neutralizing antibodies blocked the angiogenesis induced by such TAFs in vivo, slowed the growth of EL4 and admixture (TAF-EL4 + TIB6) tumors, and exhibited additive effects with anti-VEGF-A antibodies. Hence, our data reveal an additional mechanism for TAF-mediated tumorigenesis and suggest that some tumors may overcome inhibition of VEGF-mediated angiogenesis through upregulation of PDGF-C.


Proceedings of the National Academy of Sciences of the United States of America | 2009

G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models

Farbod Shojaei; Xiumin Wu; Xueping Qu; Marcin Kowanetz; Lanlan Yu; Martha Tan; Y. Gloria Meng; Napoleone Ferrara

Recent studies suggest that tumor-associated CD11b+Gr1+ myeloid cells contribute to refractoriness to antiangiogenic therapy with an anti-VEGF-A antibody. However, the mechanisms of peripheral mobilization and tumor-homing of CD11b+Gr1+ cells are unclear. Here, we show that, compared with other cytokines [granulocyte-macrophage colony stimulating factor (GM-CSF), stromal derived factor 1α, and placenta growth factor], G-CSF and the G-CSF-induced Bv8 protein have preferential expression in refractory tumors. Treatment of refractory tumors with the combination of anti-VEGF and anti-G-CSF (or anti-Bv8) reduced tumor growth compared with anti-VEGF-A monotherapy. Anti-G-CSF treatment dramatically suppressed circulating or tumor-associated CD11b+Gr1+ cells, reduced Bv8 levels, and affected the tumor vasculature. Conversely, G-CSF delivery to animals bearing anti-VEGF sensitive tumors resulted in reduced responsiveness to anti-VEGF-A treatment through induction of Bv8-dependent angiogenesis. We conclude that, at least in the models examined, G-CSF expression by tumor or stromal cells is a determinant of refractoriness to anti-VEGF-A treatment.


The EMBO Journal | 2004

VEGF-null cells require PDGFR α signaling-mediated stromal fibroblast recruitment for tumorigenesis

Jianying Dong; Jeremy Grunstein; Max L. Tejada; Frank Peale; Gretchen Frantz; Wei-Ching Liang; Wei Bai; Lanlan Yu; Joe Kowalski; Xiaohuan Liang; Germaine Fuh; Hans-Peter Gerber; Napoleone Ferrara

We generated VEGF‐null fibrosarcomas from VEGF‐loxP mouse embryonic fibroblasts to investigate the mechanisms of tumor escape after VEGF inactivation. These cells were found to be tumorigenic and angiogenic in vivo in spite of the absence of tumor‐derived VEGF. However, VEGF derived from host stroma was readily detected in the tumor mass and treatment with a newly developed anti‐VEGF monoclonal antibody substantially inhibited tumor growth. The functional significance of stroma‐derived VEGF indicates that the recruitment of stromal cells is critical for the angiogenic and tumorigenic properties of these cells. Here we identified PDGF AA as the major stromal fibroblast chemotactic factor produced by tumor cells, and demonstrated that disrupting the paracrine PDGFR α signaling between tumor cells and stromal fibroblasts by soluble PDGFR α‐IgG significantly reduced tumor growth. Thus, PDGFR α signaling is required for the recruitment of VEGF‐producing stromal fibroblasts for tumor angiogenesis and growth. Our findings highlight a novel aspect of PDGFR α signaling in tumorigenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes

Marcin Kowanetz; Xiumin Wu; John C. Lee; Martha Tan; Thijs J. Hagenbeek; Xueping Qu; Lanlan Yu; Jed Ross; Nina Korsisaari; Tim C. Cao; Hani Bou-Reslan; Dara Y. Kallop; Robby M. Weimer; Mary J. C. Ludlam; Joshua S. Kaminker; Zora Modrusan; Nicholas van Bruggen; Franklin Peale; Richard A. D. Carano; Y. Gloria Meng; Napoleone Ferrara

Priming of the organ-specific premetastatic sites is thought to be an important yet incompletely understood step during metastasis. In this study, we show that the metastatic tumors we examined overexpress granulocyte-colony stimulating factor (G-CSF), which expands and mobilizes Ly6G+Ly6C+ granulocytes and facilitates their subsequent homing at distant organs even before the arrival of tumor cells. Moreover, G-CSF–mobilized Ly6G+Ly6C+ cells produce the Bv8 protein, which has been implicated in angiogenesis and mobilization of myeloid cells. Anti–G-CSF or anti-Bv8 antibodies significantly reduced lung metastasis. Transplantation of Bv8 null fetal liver cells into lethally irradiated hosts also reduced metastasis. We identified an unexpected role for Bv8: the ability to stimulate tumor cell migration through activation of one of the Bv8 receptors, prokineticin receptor (PKR)-1. Finally, we show that administration of recombinant G-CSF is sufficient to increase the numbers of Ly6G+Ly6C+ cells in organ-specific metastatic sites and results in enhanced metastatic ability of several tumors.


The EMBO Journal | 2000

A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration

Hendrik Gille; Joe Kowalski; Lanlan Yu; Helen Hsifei Chen; M. Teresa Pisabarro; Terri Lynn Davis-Smyth; Napoleone Ferrara

Vascular endothelial growth factor (VEGF) has two highly homologous tyrosine kinase receptors: Flt‐1 (VEGFR‐1) and KDR (VEGFR‐2). KDR is strongly phosphorylated on tyrosines and can transmit mitogenic and motogenic signals following VEGF binding, while Flt‐1 is markedly less effective in mediating such functions. To dissect the regions that account for the differences between the two receptors, we generated a series of chimeric Flt‐1–KDR molecules. We found that the juxtamembrane region of Flt‐1 prevents key signaling functions. When the juxtamembrane region of Flt‐1 is replaced by that of KDR, Flt‐1 becomes competent to mediate endothelial cell migration and phosphatidylinositol 3′‐kinase activation in response to VEGF. Further mutational analysis shows that a short divergent sequence is responsible for such repressor function. However, mutant Flt‐1 receptors lacking this sequence do not transmit effective proliferative signals, suggesting that this receptor function is regulated separately. These results define a novel functional domain that serves to repress Flt‐1 activity in endothelial cells.


Investigative Ophthalmology & Visual Science | 2008

Interaction between bevacizumab and murine VEGF-A: a reassessment.

Lanlan Yu; Xiumin Wu; Zhiyong Cheng; Chingwei V. Lee; Jennifer LeCouter; Claudio Campa; Germaine Fuh; Henry B. Lowman; Napoleone Ferrara

PURPOSE Bevacizumab is a humanized anti-human VEGF-A monoclonal antibody (mAb) approved by the United States Food and Drug Administration for cancer therapy and used off label to treat neovascular age-related macular degeneration. Earlier studies characterized bevacizumab as species specific and lacking the ability to neutralize murine (m) VEGF-A. However, a recent study reported that bevacizumab is a potent inhibitor of hemangiogenesis and lymphangiogenesis in murine models. The authors sought to reassess the interaction between bevacizumab and mVEGF-A. METHODS The authors performed Western blot analysis, plasmon resonance by BIAcore, and endothelial cell proliferation assays to characterize the interaction between bevacizumab and mVEGF-A. They also tested whether bevacizumab had any effects in two in vivo murine models, laser-induced choroidal neovascularization (CNV) and melanoma growth. RESULTS Western blot detected a very weak interaction, but BIAcore detected no measurable interaction between mVEGF and bevacizumab. Bevacizumab failed to inhibit mVEGF-stimulated endothelial cell proliferation. In addition, bevacizumab was indistinguishable from the control antibody in the CNV and tumor models, whereas a cross-reactive anti-VEGF-A mAb had dramatic inhibitory effects. CONCLUSIONS Bevacizumab has an extremely weak interaction with mVEGF-A, which fails to result in immunoneutralization as assessed by several bioassays.


Trends in Cell Biology | 2008

Role of myeloid cells in tumor angiogenesis and growth

Farbod Shojaei; Cuiling Zhong; Xiumin Wu; Lanlan Yu; Napoleone Ferrara

Cells of the innate immune system have a key role in maintaining homeostasis by providing the first line of defense against many pathogens. Innate immunity can also modulate the activity of acquired immunity by several mechanisms. However, subsets of myeloid cells can facilitate tumor growth, because these cells produce angiogenic factors and can also prevent the immune system from attacking tumor cells. Recent studies also emphasize the role of myeloid cells in mediating refractoriness to anti-VEGF treatments. This function of myeloid cells occurs through a proangiogenic pathway that is, at least in part, driven by the secreted protein Bv8. This review summarizes recent findings on the complex role of bone marrow-derived cells in tumor growth.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Mice expressing a humanized form of VEGF-A may provide insights into the safety and efficacy of anti-VEGF antibodies.

Hans-Peter Gerber; Xiumin Wu; Lanlan Yu; Christian Wiesmann; Xiao Huan Liang; Chingwei V. Lee; Germaine Fuh; Christine Olsson; Lisa A. Damico; David Xie; Y. Gloria Meng; Johnny Gutierrez; Racquel Corpuz; Bing Li; Linda Hall; Linda Rangell; Ron Ferrando; Henry B. Lowman; Franklin Peale; Napoleone Ferrara

VEGF-A is important in tumor angiogenesis, and a humanized anti-VEGF-A monoclonal antibody (bevacizumab) has been approved by the FDA as a treatment for metastatic colorectal and nonsquamous, non-small-cell lung cancer in combination with chemotherapy. However, contributions of both tumor- and stromal-cell derived VEGF-A to vascularization of human tumors grown in immunodeficient mice hindered direct comparison between the pharmacological effects of anti-VEGF antibodies with different abilities to block host VEGF. Therefore, by gene replacement technology, we engineered mice to express a humanized form of VEGF-A (hum-X VEGF) that is recognized by many anti-VEGF antibodies and has biochemical and biological properties comparable with WT mouse and human VEGF-A. The hum-X VEGF mouse model was then used to compare the activity and safety of a panel of VEGF Mabs with different affinities for VEGF-A. Although in vitro studies clearly showed a correlation between binding affinity and potency at blocking endothelial cell proliferation stimulated by VEGF, in vivo experiments failed to document any consistent correlation between antibody affinity and the ability to inhibit tumor growth and angiogenesis in most animal models. However, higher-affinity antibodies were more likely to result in glomerulosclerosis during long-term treatment.


Clinical Cancer Research | 2006

Tumor-Driven Paracrine Platelet-Derived Growth Factor Receptor α Signaling Is a Key Determinant of Stromal Cell Recruitment in a Model of Human Lung Carcinoma

Max L. Tejada; Lanlan Yu; Jianying Dong; Kenneth Jung; Gloria Meng; Franklin Peale; Gretchen Frantz; Linda Hall; Xiaohuan Liang; Hans-Peter Gerber; Napoleone Ferrara

Activated fibroblasts are thought to play important roles in the progression of many solid tumors, but little is known about the mechanisms responsible for the recruitment of fibroblasts in tumors. Using several methods, we identified platelet-derived growth factor A (PDGFA) as the major fibroblast chemoattractant and mitogen from conditioned medium generated by the Calu-6 lung carcinoma cell line. In addition, we showed that Calu-6 tumors express significant levels of PDGFC, and that the levels of expression of these two PDGFRα ligands correlate strongly with the degree of stromal fibroblast infiltration into the tumor mass. The most intense expression of PDGFRα was observed in fibroblasts in the tumor outer rim. We subsequently showed that disrupting PDGFRα-mediated signaling results in significant inhibition of tumor growth in vivo. Furthermore, analysis of a compendium of microarray data revealed significant expression of PDGFA, PDGFC, and PDGFRα in human lung tumors. We propose that therapies targeting this stromal cell type may be effective in treating certain types of solid tumors.

Collaboration


Dive into the Lanlan Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge