Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lanny G. Thieme is active.

Publication


Featured researches published by Lanny G. Thieme.


SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM- STAIF 2002 | 2002

Stirling Technology Development at NASA GRC

Lanny G. Thieme; Jeffrey G. Schreiber; Lee S. Mason

The Department of Energy, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC) are developing a free-piston Stirling convertor for a high-efficiency Stirling Radioisotope Generator (SRG) for NASA Space Science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. NASA GRC is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. Recent testing of 55-We Technology Demonstration Convertors (TDC’s) built by STC includes mapping of a second pair of TDC’s, single TDC testing, and TDC electromagnetic interference and electromagnetic compatibility characterization on a non-magnetic test stand. Launch environment tests of a single TDC without its pressure vessel to better understand the convertor internal structural dynamics and of dual-opposed TDC’s with several engineering mounting structures with different natural frequencies h...


SPACE TECHNOLOGY AND APPLICATIONS INTERNAT.FORUM-STAIF 2004: Conf.on Thermophys.in Microgravity; Commercial/Civil Next Gen.Space Transp.; 21st Symp.Space Nuclear Power & Propulsion; Human Space Explor.; Space Colonization; New Frontiers & Future Concepts | 2004

Advanced Technology Development for Stirling Convertors

Lanny G. Thieme; Jeffrey G. Schreiber

A high‐efficiency Stirling Radioisotope Generator (SRG) for use on potential NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company, and NASA Glenn Research Center (GRC). These missions may include providing spacecraft onboard electric power for deep space missions or power for unmanned Mars rovers. GRC is also developing advanced technology for Stirling convertors, aimed at substantially improving the specific power and efficiency of the convertor and the overall power system. Performance and mass improvement goals have been established for second‐ and third‐generation Stirling radioisotope power systems. Multiple efforts are underway to achieve these goals, both in‐house at GRC and under various grants and contracts. The status and results to date for these efforts will be discussed in this paper. Cleveland State University (CSU) is developing a multi‐dimensional Stirling computational fluid dynamics code, capable of modeling complete con...


SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM - 2000 | 2000

Technology development for a Stirling radioisotope power system

Lanny G. Thieme; Songgang Qiu; Maurice A. White

NASA Glenn Research Center and the Department of Energy are developing a Stirling convertor for an advanced radioisotope power system to provide spacecraft on-board electric power for NASA deep space missions. NASA Glenn is addressing key technology issues through the use of two NASA Phase II SBIRs with Stirling Technology Company (STC) of Kennewick, WA. Under the first SBIR, STC demonstrated a synchronous connection of two thermodynamically independent free-piston Stirling convertors and a 40 to 50 fold reduction in vibrations compared to an unbalanced convertor. The second SBIR is for the development of an Adaptive Vibration Reduction System (AVRS) that will essentially eliminate vibrations over the mission lifetime, even in the unlikely event of a failed convertor. This paper presents the status and results for these two SBIR projects and also discusses a new NASA Glenn in-house project to provide supporting technology for the overall Stirling radioisotope power system development. Tasks for this new effort include convertor performance verification, controls development, heater head structural life assessment, magnet characterization and thermal aging tests, FEA analysis for a lightweight alternator concept, and demonstration of convertor operation under launch and orbit transfer load conditions.


6th International Energy Conversion Engineering Conference (IECEC) | 2008

Supporting Technology at GRC to Mitigate Risk as Stirling Power Conversion Transitions to Flight

Jeffrey G. Schreiber; Lanny G. Thieme; Wayne A. Wong

Abstract Stirling power conversion technology has been reaching more advanced levels of maturity during its development for space power applications. The current effort is in support of the Advanced Stirling Radioisotope Generator (ASRG), which is being developed by the U.S. Department of Energy (DOE), Lockheed Martin Space Systems Company (LMSSC), Sunpower Inc., and the NASA Glenn Research Center (GRC). This generator would use two high-efficiency Advanced Stirling Convertors (ASCs) to convert thermal energy from a radioisotope heat source into electricity. Of paramount importance is the reliability of the power system and as a part of this, the Stirling power convertors. GRC has established a supporting technology effort with tasks in the areas of reliability, convertor testing, high-temperature materials, structures, advanced analysis, organics, and permanent magnets. The project utilizes the matrix system at GRC to make use of resident experts in each of the aforementioned fields. Each task is intended to reduce risk and enhance reliability of the convertor as this technology transitions toward flight status. This paper will provide an overview of each task, outline the recent efforts and accomplishments, and show how they mitigate risk and impact the reliability of the ASC’s and ultimately, the ASRG.


SPACE TECHNOLOGY AND APPLICATIONS INT.FORUM-STAIF 2003: Conf.on Thermophysics in Microgravity; Commercial/Civil Next Generation Space Transportation; Human Space Exploration; Symps.on Space Nuclear Power and Propulsion (20th); Space Colonization (1st) | 2003

NASA GRC Stirling Technology Development Overview

Lanny G. Thieme; Jeffrey G. Schreiber

The Department of Energy, Lockheed Martin (LM), Stirling Technology Company, and NASA Glenn Research Center (GRC) are developing a high‐efficiency Stirling Radioisotope Generator (SRG) for potential NASA Space Science missions. The SRG is being developed for multimission use, including providing spacecraft onboard electric power for NASA deep space missions and power for unmanned Mars rovers. NASA GRC is conducting an in‐house supporting technology project to assist in developing the Stirling convertor for space qualification and mission implementation. Preparations are underway for a thermal/vacuum system demonstration and unattended operation during endurance testing of the 55‐We Technology Demonstration Convertors. Heater head life assessment efforts continue, including verification of the heater head brazing and heat treatment schedules and evaluation of any potential regenerator oxidation. Long‐term magnet aging tests are continuing to characterize any possible aging in the strength or demagnetizatio...


1st International Energy Conversion Engineering Conference (IECEC) | 2003

Overview of NASA GRC Stirling Technology Development

Jeffrey G. Schreiber; Lanny G. Thieme

The Stirling Radioisotope Generator (SRG) is currently being developed by Lockheed Martin Astronautics (LMA) under contract to the Depar1ment of Energy (DOE). The generator will be a high efficiency electric power source for NASA Space Science missions with the capability to operate in the vacuum of deep space or in an atmosphere such as on the surface of Mars. High system efficiency is obtained through the use of free-piston Stirling power conversion technology. Power output of the generator will be greater than 100 watts at the beginning of life with the decline in power being largely due to the decay of the plutonium heat source. In suppOl1 of the DOE SRG project, the NASA Glenn Research Center (GRC) has established a near-term technology effort to provide some of the critical data to ensure a successful transition to flight for what will be the first dynamic power system used in space. Initially, a limited number of technical areas were selected for the GRC effort, however this is now being expanded to more thoroughly cover a range of technical issues. The tasks include in-house testing of Stirling convertors and controllers, materials evaluation and heater head life assessment, structural dynamics, electromagnetic interference, organics evaluation, and reliability analysis. Most of these high-level tasks have several subtasks within. There is also an advanced technology effort that is complementary near-term technology effort. Many of the tests make use of the 55-We Technology Demonstration Convel10r (TDC). There have been multiple controller tests to support the LMA flight controller design effort. Preparation is continuing for a thermal/vacuum system demonstration. A pair of flight prototype TDCs have recently been placed on an extended test with unattended, continuous operation. Heater head life assessment efforts continue, with the material data being refined and the analysis moving toward the system perspective. Long-term magnet aging tests are continuing to characterize any possible aging in the strength or demagnetization resistance of the permanent magnets used in the linear alternator. In a parallel effort, higher performance magnets are also being evaluated. A reliability effort is being initiated that will help to guide the development activities with an increased focus on the necessary components and subsystems. Some other disciplines that are active in the GRC technology effort include structural dynamics, linear alternator analysis, EMI/EMC, controls, and mechanical design evaluation. This paper will provide an overview of some of the GRC technical efforts, including the current status, and a description of future efforts.


SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM-STAIF 2007: 11th Conf Thermophys.Applic.in Micrograv.; 24th Symp Space Nucl.Pwr.Propulsion; 5th Conf Hum/Robotic Techn & Vision Space Explor.; 5th Symp Space Coloniz.; 4th Symp New Frontrs & Future Con | 2007

Final Results for the GRC Supporting Technology Development Project for the 110-Watt Stirling Radioisotope Generator (SRG110)

Jeffrey G. Schreiber; Lanny G. Thieme

From 1999‐2006, the NASA Glenn Research Center (GRC) supported the development of a high‐efficiency, nominal 110‐We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions, including deep space missions. Mars rovers, and lunar applications. Lockheed Martin (LM) was the system integrator for the SRG110, under contact to the Department of Energy (DOE). Infinia Corporation (formerly Stirling Technology Company) developed the Stirling converter. First as a contractor to DOE and then under subcontract to LM. The SRG110 development has been redirected, and recent program changes have been made to significantly increase the specific power of the generator. System development of an Advanced Stirling Radioisotope Generator (ASRG) has now begun, using a lightweight, advanced converter from Sunpower, Inc. This paper summarizes the results of the supporting technology effort that GRC completed for the SRG110. GRC tasks included converter extended‐duration testing in air and thermal vacuum environm...


intersociety energy conversion engineering conference | 1990

Recent Stirling Engine Loss-understanding Results

Roy Tew; Lanny G. Thieme; James E. Dudenhoefer

For several years, the National Aeronautics and Space Administration and other U.S. Government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASAs objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed here.


SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM‐STAIF 2008: 12th Conference on Thermophysics Applications in Microgravity; 1st Symposium on Space Resource Utilization; 25th Symposium on Space Nuclear Power and Propulsion; 6th Conference on Human/Robotic Technology and the Vision for Space Exploration; 6th Symposium on Space Colonization; 5th Symposium on New Frontiers and Future Concept | 2008

GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

Jeffrey G. Schreiber; Lanny G. Thieme

From 1999–2006, the Glenn Research Center (GRC) supported a NASA project to develop a high‐efficiency, nominal 110‐We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. Th...


SPACE TECHNOLOGY AND APPLICATIONS INT.FORUM-STAIF 2005: Conf.Thermophys in#N#Micrograv;Conf Comm/Civil Next Gen.Space Transp; 22nd Symp Space Nucl.Powr#N#Propuls.;Conf.Human/Robotic Techn.Nat'l Vision Space Expl.; 3rd Symp Space Colon.; 2nd#N#Symp.New Frontiers | 2005

Supporting Development for the Stirling Radioisotope Generator and Advanced Stirling Technology Development at NASA GRC

Lanny G. Thieme; Jeffrey G. Schreiber

A high‐efficiency, 110‐We (watts electric) Stirling Radioisotope Generator (SRG110) for possible use on future NASA Space Science missions is being developed by the Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and NASA Glenn Research Center (GRC). Potential mission use includes providing spacecraft onboard electric power for deep space missions and power for unmanned Mars rovers. GRC is conducting an in‐house supporting technology project to assist in SRG110 development. One‐, three‐, and six‐month heater head structural benchmark tests have been completed in support of a heater head life assessment. Testing is underway to evaluate the key epoxy bond of the permanent magnets to the linear alternator stator lamination stack. GRC has completed over 10,000 hours of extended duration testing of the Stirling convertors for the SRG110, and a three‐year test of two Stirling convertors in a thermal vacuum environment will be starting shortly. GRC is also developing advanced technology...

Collaboration


Dive into the Lanny G. Thieme's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy Tew

Glenn Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge