Lanping Zhou
Peking Union Medical College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lanping Zhou.
PLOS ONE | 2015
Jinqiang Zhang; Shaohua Li; Fang Liu; Lanping Zhou; Ningsheng Shao; Xiaohang Zhao
Many studies have shown that the quantity and dynamics of circulating tumor cells (CTCs) in peripheral blood of patients afflicted with solid tumours have great relevance in therapeutic efficacy and prognosis. Different methods based on various strategies have been developed to isolate and identify CTCs, but their efficacy needs to be improved because of the rarity and complexity of CTCs. This study was designed to examine the possibility of using a SELEX aptamer (BC-15) as a probe to identify rare CTCs out of background nucleated cells. Aptamer BC-15 was selected from a random oligonucleotide library screened against human breast cancer tissue. Fluorescence staining showed that BC-15 had a high affinity for nuclei of human cancer cell lines of various origins as well as CTCs isolated from pancreatic cancer patients, whereas its binding capacity for non-tumor breast epithelial cells and leukocytes was almost undetectable. BC-15+/CD45- cells in cancer patient blood were also found to be cytokeratins 18-positive and aneuploid by immunofluorescence staining and fluorescent in situ hybridization, respectively. Finally, the aptamer method was compared with the well-established anti-cytokeratin method using 15 pancreatic cancer patient blood samples, and enumeration indicated no difference between these two methods. Our study establishes a novel way to identify CTCs by using a synthetic aptamer probe. This new approach is comparable with the anti-cytokeratin-based CTC identification method.
Clinical Cancer Research | 2011
Yang Xu; Lanping Zhou; Jing Huang; Fang Liu; Jian Yu; Qimin Zhan; Lin Zhang; Xiaohang Zhao
Purpose: Second mitochondria-derived activator of caspase (Smac) regulates chemotherapy-induced apoptosis. Smac mimetics have been tested in clinical trials as chemosensitizers. We determined the role of Smac in modulating the chemosensitivity of esophageal squamous cell carcinoma (ESCC). Experimental Design: Smac expression was evaluated in tissues from ESCC patients with differential chemotherapeutic responses. The effects of Smac knockdown and Smac mimetics on the chemosensitivity of ESCC cells and the molecular mechanisms by which Smac and Smac mimetics modulate chemosensitivity were determined. The therapeutic responses of ESCC cells with different Smac statuses were compared using xenograft models. Results: We found that Smac was significantly downregulated in most ESCC samples (36.8%, 25/68, P = 0.001), and Smac expression differed significantly (P < 0.05) between chemosensitive and chemoresistant tumors. The associations of tested factors and their responses were examined using logistic regression analysis. In ESCC cells treated with cisplatin, a common chemotherapeutic drug, Smac and cytochrome c were released from mitochondria, and caspase-3 and caspase-9 were activated. Knockdown of Smac abrogated cisplatin-induced apoptosis, mitochondrial dysfunction, cytochrome c release, and caspase activation. Smac deficiency also reduced the effect of cisplatin on long-term cell viability, and led to cisplatin resistance in xenograft tumors in vivo. LBW242, a small molecule Smac mimetic, enhanced cisplatin-induced apoptosis and caspase activation and restored cisplatin sensitivity in Smac-deficient cells. Conclusion: Our data suggested that downregulation of Smac may be a chemoresistance mechanism in ESCC. Combinations of Smac mimetics with chemotherapeutic agents may have therapeutic benefits for the treatment of esophageal cancer. Clin Cancer Res; 17(16); 5412–22. ©2011 AACR.
PLOS ONE | 2014
Yang Xu; Zhengwei Lin; Nan Zhao; Lanping Zhou; Fang Liu; Zbigniew A. Cichacz; Lin Zhang; Qimin Zhan; Xiaohang Zhao
Cisplatin-based chemotherapy is currently the standard treatment for locally advanced esophageal cancer. Cisplatin has been shown to induce both apoptosis and necrosis in cancer cells, but the mechanism by which programmed necrosis is induced remains unknown. In this study, we provide evidence that cisplatin induces necrotic cell death in apoptosis-resistant esophageal cancer cells. This cell death is dependent on RIPK3 and on necrosome formation via autocrine production of TNFα. More importantly, we demonstrate that RIPK3 is necessary for cisplatin-induced killing of esophageal cancer cells because inhibition of RIPK1 activity by necrostatin or knockdown of RIPK3 significantly attenuates necrosis and leads to cisplatin resistance. Moreover, microarray analysis confirmed an anti-apoptotic molecular expression pattern in esophageal cancer cells in response to cisplatin. Taken together, our data indicate that RIPK3 and autocrine production of TNFα contribute to cisplatin sensitivity by initiating necrosis when the apoptotic pathway is suppressed or absent in esophageal cancer cells. These data provide new insight into the molecular mechanisms underlying cisplatin-induced necrosis and suggest that RIPK3 is a potential marker for predicting cisplatin sensitivity in apoptosis-resistant and advanced esophageal cancer.
PLOS ONE | 2014
Bo Han; Wei Li; Yulin Sun; Lanping Zhou; Yang Xu; Xiaohang Zhao
The protocatechuic acid ethyl ester ethyl-3,4-dihydroxybenzoate is an antioxidant found in the testa of peanut seeds. Previous studies have shown that ethyl-3,4-dihydroxybenzoate can effectively reduce breast cancer cell metastasis by inhibiting prolyl-hydroxylase. In this study, we investigated the cytotoxic effect of ethyl-3,4-dihydroxybenzoate on esophageal squamous cell carcinoma cells in vitro and identified key regulators of ethyl-3,4-dihydroxybenzoate-induced esophageal cancer cell death through transcription expression profiling. Using flow cytometry analysis, we found that ethyl-3,4-dihydroxybenzoate induced S phase accumulation, a loss in mitochondrial membrane permeabilization, and caspase-dependent apoptosis. Moreover, an expression profile analysis identified 46 up- and 9 down-regulated genes in esophageal cancer KYSE 170 cells treated with ethyl-3,4-dihydroxybenzoate. These differentially expressed genes are involved in several signaling pathways associated with cell cycle regulation and cellular metabolism. Consistent with the expression profile results, the transcriptional and protein expression levels of candidate genes NDRG1, BNIP3, AKR1C1, CCNG2 and VEGFA were found to be significantly increased in treated KYSE 170 cells by reverse-transcription PCR and western blot analysis. We also found that protein levels of hypoxia-inducible factor-1α, BNIP3, Beclin and NDRG1 were increased and that enriched expression of BNIP3 and Beclin caused autophagy mediated by microtubule-associated protein 1 light chain 3 in the treated cells. Autophagy and apoptosis were activated together in esophageal cancer cells after exposed to ethyl-3,4-dihydroxybenzoate. Furthermore, knock-down of NDRG1 expression by siRNA significantly attenuated apoptosis in the cancer cells, implying that NDRG1 may be required for ethyl-3,4-dihydroxybenzoate-induced apoptosis. Together, these results suggest that the cytotoxic effects of ethyl-3,4-dihydroxybenzoate were mediated by the up-regulation of NDRG1, BNIP3, Beclin and hypoxia-inducible factor-1α, initiating BNIP3 and Beclin mediated autophagy at an early stage and ultimately resulting in esophageal cancer cell apoptosis.
Scientific Reports | 2016
Yulin Sun; Weiwei Zheng; Zhengguang Guo; Qiang Ju; Lin Zhu; Jiajia Gao; Lanping Zhou; Fang Liu; Yang Xu; Qimin Zhan; Zhixiang Zhou; Wei Sun; Xiaohang Zhao
Tumor-derived exosomes are important for cell-cell communication. However, the role of TP53 in the control of exosome production in colorectal cancer (CRC) is controversial and unclear. The features of exosomes secreted from HCT116 TP53-wild type (WT), TP53-knockout (KO) and constructed TP53 (R273H)-mutant (MT) cells were assessed. The exosomes from the MT and KO cells exhibited significantly reduced sizes compared with the WT cells. A comprehensive proteomic analysis of exosomal proteins was performed using the isobaric tag for relative and absolute quantitation (iTRAQ)-2D-LC-MS/MS strategy. A total of 3437 protein groups with ≥2 matched peptides were identified. Specifically, hepatocyte growth factor-regulated tyrosine kinase substrate (HGS) was consistently down-regulated in the exosomes from the MT and KO cells. Functional studies demonstrated that low HGS levels were responsible for the decreased exosome size. TP53 regulated HGS expression and thus HGS-dependent exosome formation. Furthermore, the HGS expression was gradually increased concomitant with CRC carcinogenesis and was an independent poor prognostic factor. In conclusion, a novel HGS-dependent TP53 mechanism in exosome formation was identified in CRC. HGS may serve as a novel prognostic biomarker and a candidate target for therapeutic interventions.
Cancer Biology & Therapy | 2016
Runna Ai; Yulin Sun; Zhimin Guo; Wei Wei; Lanping Zhou; Fang Liu; Denver T. Hendricks; Yang Xu; Xiaohang Zhao
ABSTRACT N-myc down-regulated gene 1 (NDRG1) has been shown to regulate tumor growth and metastasis in various malignant tumors and also to be dysregulated in esophageal squamous cell carcinoma (ESCC). Here, we show that NDRG1 overexpression (91.9%, 79/86) in ESCC tumor tissues is associated with poor overall survival of esophageal cancer patients. When placed in stable transfectants of the KYSE 30 ESCC cell line generated by lentiviral transduction with the ectopic overexpression of NDRG1, the expression of transducin-like enhancer of Split 2 (TLE2) was decreased sharply, however β−catenin was increased. Mechanistically, NDRG1 physically associates with TLE2 and β−catenin to affect the Wnt pathway. RNA interference and TLE2 overexpression studies demonstrate that NDRG1 fails to active Wnt pathway compared with isogenic wild-type controls. Strikingly, NDRG1 overexpression induces the epithelial mesenchymal transition (EMT) through activating the Wnt signaling pathway in ESCC cells, decreased the expression of E-cadherin and enhanced the expression of Snail. Our study elucidates a mechanism of NDRG1-regulated Wnt pathway activation and EMT via affecting TLE2 and β-catenin expression in esophageal cancer cells. This indicates a pro-oncogenic role for NDRG1 in esophageal cancer cells whereby it modulates tumor progression.
World Journal of Gastroenterology | 2015
Yu-Lin Sun; Jian-Qiang Cai; Fang Liu; Xinyu Bi; Lanping Zhou; Xiaohang Zhao
AIM To investigate the expression characteristics of peroxiredoxin 1 (PRDX1) mRNA and protein in liver cancer cell lines and tissues. METHODS The RNA sequencing data from 374 patients with liver cancer were obtained from The Cancer Genome Atlas. The expression and clinical characteristics of PRDX1 mRNA were analyzed in this dataset. The Kaplan-Meier and Cox regression survival analysis was performed to determine the relationship between PRDX1 levels and patient survival. Subcellular fractionation and Western blotting were used to demonstrate the expression of PRDX1 protein in six liver cancer cell lines and 29 paired fresh tissue specimens. After bioinformatics prediction, a putative post-translational modification form of PRDX1 was observed using immunofluorescence under confocal microscopy and immunoprecipitation analysis in liver cancer cells. RESULTS The mRNA of PRDX1 gene was upregulated about 1.3-fold in tumor tissue compared with the adjacent non-tumor control (P = 0.005). Its abundance was significantly higher in men than women (P < 0.001). High levels of PRDX1 mRNA were associated with a shorter overall survival time (P = 0.04) but not with recurrence-free survival. The Cox regression analysis demonstrated that patients with high PRDX1 mRNA showed about 1.9-fold increase of risk for death (P = 0.03). In liver cancer cells, PRDX1 protein was strongly expressed with multiple different bands. PRDX1 in the cytosol fraction existed near the theoretical molecular weight, whereas two higher molecular weight bands were present in the membrane/organelle and nuclear fractions. Importantly, the theoretical PRDX1 band was increased, whereas the high molecular weight form was decreased in tumor tissues. Subsequent experiments revealed that the high molecular weight bands of PRDX1 might result from the post-translational modification by small ubiquitin-like modifier-1 (SUMO1). CONCLUSION PRDX1 was overexpressed in the tumor tissues of liver cancer and served as an independent poor prognostic factor for overall survival. PRDX1 can be modified by SUMO to play specific roles in hepatocarcinogenesis.
Oncotarget | 2017
Gaijing Han; Zongyong Wu; Nan Zhao; Lanping Zhou; Fang Liu; Fangfei Niu; Yang Xu; Xiaohang Zhao
PURPOSE Esophageal squamous cell carcinoma (ESCC) is a serious malignant tumor that affects human health. We analyzed the correlation between serum stathmin level and ESCC and elucidated the molecular mechanisms of stathmins promotion of ESCC cell invasion and metastasis. METHODS Stathmin level in ESCC and healthy control serum were detected by enzyme-linked immunosorbent assay (ELISA), and the clinical parameters were analyzed. We established ESCC cells with stathmin overexpression or knockdown and then evaluated the effects of stathmin on invasion and metastasis in ESCC. Differentially expressed genes were analyzed by Human Transcriptome Array and confirmed by RT-PCR. The expression levels of the integrin family, focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) were detected by immunoblotting. RESULTS Serum levels of stathmin were significantly higher in ESCC than in control serum and associated with lymph node metastasis, tumor stage and size. Furthermore, we found that stathmin promoted migration and invasion of ESCC cells in vitro and in vivo. In addition, we confirmed that the activation of the integrinα5β1/FAK/ERK pathway is increased in stathmin-overexpression cells and accelerates cell motility by enhancing cell adhesion ability. CONCLUSION Stathmin may predict a potential metastasis biomarker for ESCC.Purpose Esophageal squamous cell carcinoma (ESCC) is a serious malignant tumor that affects human health. We analyzed the correlation between serum stathmin level and ESCC and elucidated the molecular mechanisms of stathmins promotion of ESCC cell invasion and metastasis. Methods Stathmin level in ESCC and healthy control serum were detected by enzyme-linked immunosorbent assay (ELISA), and the clinical parameters were analyzed. We established ESCC cells with stathmin overexpression or knockdown and then evaluated the effects of stathmin on invasion and metastasis in ESCC. Differentially expressed genes were analyzed by Human Transcriptome Array and confirmed by RT-PCR. The expression levels of the integrin family, focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK) were detected by immunoblotting. Results Serum levels of stathmin were significantly higher in ESCC than in control serum and associated with lymph node metastasis, tumor stage and size. Furthermore, we found that stathmin promoted migration and invasion of ESCC cells in vitro and in vivo. In addition, we confirmed that the activation of the integrinα5β1/FAK/ERK pathway is increased in stathmin-overexpression cells and accelerates cell motility by enhancing cell adhesion ability. Conclusion Stathmin may predict a potential metastasis biomarker for ESCC.
Cancer Letters | 2014
Hongjun Gao; Zhaoxu Zheng; You-Sheng Mao; Wei Wang; Yuanyuan Qiao; Lanping Zhou; Fang Liu; Hong-Zhi He; Xiaohang Zhao
Our aim was to identify novel tumor-associated antigens from the esophageal squamous cell carcinoma (ESCC) cell line EC0156, and related autoantibodies in sera from patients with ESCC. We used modified serological proteome analysis, involving one- and two-dimensional electrophoresis, Western blot, and MALDI-TOF/TOF-MS to identify 6 ESCC-associated antigens. From these, 105 kDa heat shock protein (HSP105) and triosephosphate isomerase (TIM) were further evaluated and we determined they could induce autoantibody responses in ESCC sera and are highly expressed in ESCC tissues. Anti-HSP105 and anti-TIM autoantibodies were found in 39.1% (18/46) and 34.8% (16/46) of patients with ESCC, respectively, but only in two controls. A receiver operating characteristic curve constructed with HSP105 and TIM gave a sensitivity of 54.3% and 95% (38/40) specificity in discriminating ESCC from matched controls. Interestingly, we found that autoantibodies against TIM in ESCC serum mainly reacted with glycosylated but not deglycosylated TIM. The preliminary results suggest the potential utility of screening autoantibodies in sera for use as biomarkers for cancer diagnosis.
Oncotarget | 2016
Kun Jia; Wei Li; Feng Wang; Haixia Qu; Yuanyuan Qiao; Lanping Zhou; Yulin Sun; Qingwei Ma; Xiaohang Zhao
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant neoplasms worldwide. Patients are often diagnosed at advanced stages with poor prognosis due to the absence of obvious early symptoms. Here, we applied a high-throughput serum peptidome analysis to identify circulating peptide markers of ESCC. Weak cationic exchange magnetic beads coupled to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used for two-stage proteotypic peptide profiling in complex serum samples collected from 477 cancer patients and healthy controls. We established a genetic algorithm model containing three significantly differentially expressed peptides at 1,925.5, 2,950.6 and 5,900.0 Da with a sensitivity and specificity of 97.00% and 95.92% in the training set and 97.03% and 100.00% in the validation set, respectively. The models diagnostic capability was significantly better than SCC-Ag and Cyfra 21–1, especially for early stage ESCC, with an achieved sensitivity of 96.94%. Subsequently, these peptides were identified as fragments of AHSG, TSP1 and FGA by linear ion trap-orbitrap hybrid tandem mass spectrometry. Notably, increased tissue and serum levels of TSP1 in ESCC were verified and correlated with disease progression. In addition, tissue TSP1 was an independent poor prognostic factor in ESCC. In conclusion, the newly established circulating peptide panel and identified proteins could serve as potential biomarkers for the early detection and diagnosis of ESCC. Nevertheless, a larger cohort will be required for further unequivocal validation of their clinical application.