Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lara B. Anderson is active.

Publication


Featured researches published by Lara B. Anderson.


Journal of High Energy Physics | 2012

Heterotic line bundle standard models

Lara B. Anderson; James Gray; Andre Lukas; Eran Palti

A bstractIn a previous publication, arXiv:1106.4804, we have found 200 models from heterotic Calabi-Yau compactifications with line bundles, which lead to standard models after taking appropriate quotients by a discrete symmetry and introducing Wilson lines. In this paper, we construct the resulting standard models explicitly, compute their spectrum including Higgs multiplets, and analyze some of their basic properties. After removing redundancies we find about 400 downstairs models, each with the precise matter spectrum of the supersymmetric standard model, with one, two or three pairs of Higgs doublets and no exotics of any kind. In addition to the standard model gauge group, up to four Green-Schwarz anomalous U(1) symmetries are present in these models, which constrain the llowed operators in the four-dimensional effective supergravity. The vector bosons associated to these anomalous U(1) symmetries are massive. We explicitly compute the spectrum of allowed operators for each model and present the results, together with the defining data of the models, in a database of standard models accessible here. Based on these results we analyze elementary phenomenological properties. For example, for about 200 models all dimension four and five proton decay violating operators are forbidden by the additional U(1) symmetries.


Physical Review D | 2011

Two hundred heterotic standard models on smooth Calabi-Yau threefolds

Lara B. Anderson; Andre Lukas; James Gray; Eran Palti

We construct heterotic standard models by compactifying on smooth Calabi-Yau three-folds in the presence of purely Abelian internal gauge fields. A systematic search over complete intersection Calabi-Yau manifolds with less than six Kahler parameters leads to over 200 such models which we present. Each of these models has precisely the matter spectrum of the MSSM, at least one pair of Higgs doublets, the standard model gauge group and no exotics. For about 100 of these models there are, naively, four additional U(1) symmetries, however these are Green-Schwarz anomalous and, hence, massive. In the remaining cases, three U(1) symmetries are anomalous while the fourth, massless one can be spontaneously broken by singlet vacuum expectation values. The presence of additional global U(1) symmetries, together with the possibility of switching on singlet vacuum expectation values, leads to a rich phenomenology which is illustrated for a particular example. Our database of standard models, which can be further enlarged by simply extending the computer-based search, allows for a detailed and systematic phenomenological analysis of string standard models, covering issues such as the structure of Yukawa couplings, R-parity violation, proton stability and neutrino masses.


Journal of High Energy Physics | 2010

Exploring Positive Monad Bundles And A New Heterotic Standard Model

Lara B. Anderson; James Gray; Yang-Hui He; Andre Lukas

A complete analysis of all heterotic Calabi-Yau compactifications based on positive two-term monad bundles over favourable complete intersection Calabi-Yau threefolds is performed. We show that the original data set of about 7000 models contains 91 standard-like models which we describe in detail. A closer analysis of Wilson-line breaking for these models reveals that none of them gives rise to precisely the matter field content of the standard model. We conclude that the entire set of positive two-term monads on complete intersection Calabi-Yau manifolds is ruled out on phenomenological grounds. We also take a first step in analyzing the larger class of non-positive monads. In particular, we construct a supersymmetric heterotic standard model within this class. This model has the standard model gauge group and an additional U(1)B−L symmetry, precisely three families of quarks and leptons, one pair of Higgs doublets and no anti-families or exotics of any kind.


Journal of High Energy Physics | 2008

Monad bundles in heterotic string compactifications

Lara B. Anderson; Yang-Hui He; Andre Lukas

In this paper, we study positive monad vector bundles on complete intersection Calabi-Yau manifolds in the context of E8 × E8 heterotic string compactifications. We show that the class of such bundles, subject to the heterotic anomaly condition, is finite and consists of about 7000 models. We explain how to compute the complete particle spectrum for these models. In particular, we prove the absence of vector-like family anti-family pairs in all cases. We also verify a set of highly non-trivial necessary conditions for the stability of the bundles. A full stability proof will appear in a companion paper. A scan over all models shows that even a few rudimentary physical constraints reduces the number of viable models drastically.


Journal of High Energy Physics | 2007

Heterotic Compactification, An Algorithmic Approach

Lara B. Anderson; Yang-Hui He; Andre Lukas

We approach string phenomenology from the perspective of computational algebraic geometry, by providing new and efficient techniques for proving stability and calculating particle spectra in heterotic compactifications. This is done in the context of complete intersection Calabi-Yau manifolds in a single projective space where we classify positive monad bundles. Using a combination of analytic methods and computer algebra we prove stability for all such bundles and compute the complete particle spectrum, including gauge singlets. In particular, we find that the number of anti-generations vanishes for all our bundles and that the spectrum is manifestly moduli-dependent.


Journal of High Energy Physics | 2014

T-Branes and Geometry

Lara B. Anderson; Jonathan J. Heckman; Sheldon Katz

A bstractT-branes are a non-abelian generalization of intersecting branes in which the matrix of normal deformations is nilpotent along some subspace. In this paper we study the geometric remnant of this open string data for six-dimensional F-theory vacua. We show that in the dual M-theory / IIA compactification on a smooth Calabi-Yau threefold Xsmth, the geometric remnant of T-brane data translates to periods of the three-form potential valued in the intermediate Jacobian of Xsmth. Starting from a smoothing of a singular Calabi-Yau, we show how to track this data in singular limits using the theory of limiting mixed Hodge structures, which in turn directly points to an emergent Hitchin-like system coupled to defects. We argue that the physical data of an F-theory compactification on a singular threefold involves specifying both a geometry as well as the remnant of three-form potential moduli and flux which is localized on the discriminant. We give examples of T-branes in compact F-theory models with heterotic duals, and comment on the extension of our results to four-dimensional vacua.


Journal of High Energy Physics | 2014

A Comprehensive Scan for Heterotic SU(5) GUT models

Lara B. Anderson; Andrei Constantin; James Gray; Andre Lukas; Eran Palti

A bstractCompactifications of heterotic theories on smooth Calabi-Yau manifolds remain one of the most promising approaches to string phenomenology. In two previous papers, arXiv:1106.4804 and arXiv:1202.1757, large classes of such vacua were constructed, using sums of line bundles over complete intersection Calabi-Yau manifolds in products of projective spaces that admit smooth quotients by finite groups. A total of 1012 different vector bundles were investigated which led to 202 SU(5) Grand Unified Theory (GUT) models. With the addition of Wilson lines, these in turn led, by a conservative counting, to 2122 heterotic standard models. In the present paper, we extend the scope of this programme and perform an exhaustive scan over the same class of models. A total of 1040 vector bundles are analysed leading to 35, 000 SU(5) GUT models. All of these compactifications have the right field content to induce low-energy models with the matter spectrum of the supersymmetric standard model, with no exotics of any kind. The detailed analysis of the resulting vast number of heterotic standard models is a substantial and ongoing task in computational algebraic geometry.


Journal of High Energy Physics | 2014

Physics of F-theory compactifications without section

Lara B. Anderson; Iñaki García-Etxebarria; Thomas W. Grimm; Jan Keitel

A bstractWe study the physics of F-theory compactifications on genus-one fibrations without section by using an M-theory dual description. The five-dimensional action obtained by considering M-theory on a Calabi-Yau threefold is compared with a sixdimensional F-theory effective action reduced on an additional circle. We propose that the six-dimensional effective action of these setups admits geometrically massive U(1) vectors with a charged hypermultiplet spectrum. The absence of a section induces NS-NS and R-R three-form fluxes in F-theory that are non-trivially supported along the circle and induce a shift-gauging of certain axions with respect to the Kaluza-Klein vector. In the five-dimensional effective theory the Kaluza-Klein vector and the massive U(1)s combine into a linear combination that is massless. This U(1) is identified with the massless U(1) corresponding to the multi-section of the Calabi-Yau threefold in M-theory. We confirm this interpretation by computing the one-loop Chern-Simons terms for the massless vectors of the five-dimensional setup by integrating out all massive states. A closed formula is found that accounts for the hypermultiplets charged under the massive U(1)s.


Journal of High Energy Physics | 2009

Stability walls in heterotic theories

Lara B. Anderson; James Gray; Andre Lukas; Burt A. Ovrut

We study the sub-structure of the heterotic Kahler moduli space due to the presence of non-Abelian internal gauge fields from the perspective of the four-dimensional effective theory. Internal gauge fields can be supersymmetric in some regions of the Kahler moduli space but break supersymmetry in others. In the context of the four-dimensional theory, we investigate what happens when the Kahler moduli are changed from the supersymmetric to the non-supersymmetric region. Our results provide a low-energy description of supersymmetry breaking by internal gauge fields as well as a physical picture for the mathematical notion of bundle stability. Specifically, we find that at the transition between the two regions an additional anomalous U(1) symmetry appears under which some of the states in the low-energy theory acquire charges. We compute the associated D-term contribution to the four-dimensional potential which contains a Kahler-moduli dependent Fayet-Iliopoulos term and contributions from the charged states. We show that this D-term correctly reproduces the expected physics. Several mathematical conclusions concerning vector bundle stability are drawn from our arguments. We also discuss possible physical applications of our results to heterotic model building and moduli stabilisation.


Physical Review D | 2011

Stabilizing all geometric moduli in heterotic Calabi-Yau vacua

Lara B. Anderson; James Gray; Andre Lukas; Burt A. Ovrut

We propose a scenario to stabilize all geometric moduli - that is, the complex structure, Kahler moduli and the dilaton - in smooth heterotic Calabi-Yau compactifications without Neveu-Schwarz three-form flux. This is accomplished using the gauge bundle required in any heterotic compactification, whose perturbative effects on the moduli are combined with non-perturbative corrections. We argue that, for appropriate gauge bundles, all complex structure and a large number of other moduli can be perturbatively stabilized - in the most restrictive case, leaving only one combination of Kahler moduli and the dilaton as a flat direction. At this stage, the remaining moduli space consists of Minkowski vacua. That is, the perturbative superpotential vanishes in the vacuum without the necessity to fine-tune flux. Finally, we incorporate non-perturbative effects such as gaugino condensation and/or instantons. These are strongly constrained by the anomalous U(1) symmetries which arise from the required bundle constructions. We present a specific example, with a consistent choice of non-perturbative effects, where all remaining flat directions are stabilized in an AdS vacuum.

Collaboration


Dive into the Lara B. Anderson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Burt A. Ovrut

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge