Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lara Ordóñez-Gutiérrez is active.

Publication


Featured researches published by Lara Ordóñez-Gutiérrez.


Nature Neuroscience | 2016

PTEN recruitment controls synaptic and cognitive function in Alzheimer's models

Shira Knafo; Cristina Sánchez-Puelles; Ernest Palomer; Igotz Delgado; Jonathan E. Draffin; Janire Mingo; Tina Wahle; Kanwardeep Kaleka; Liping Mou; Inmaculada Pereda-Pérez; Edvin Klosi; Erik B Faber; Heidi M Chapman; Laura Lozano-Montes; Ana Ortega-Molina; Lara Ordóñez-Gutiérrez; Francisco Wandosell; Jose Viña; Carlos G. Dotti; Randy A. Hall; Rafael Pulido; Nashaat Z. Gerges; Andrew M. Chan; Mark R. Spaller; Manuel Serrano; César Venero; José A. Esteban

Dyshomeostasis of amyloid-β peptide (Aβ) is responsible for synaptic malfunctions leading to cognitive deficits ranging from mild impairment to full-blown dementia in Alzheimers disease. Aβ appears to skew synaptic plasticity events toward depression. We found that inhibition of PTEN, a lipid phosphatase that is essential to long-term depression, rescued normal synaptic function and cognition in cellular and animal models of Alzheimers disease. Conversely, transgenic mice that overexpressed PTEN displayed synaptic depression that mimicked and occluded Aβ-induced depression. Mechanistically, Aβ triggers a PDZ-dependent recruitment of PTEN into the postsynaptic compartment. Using a PTEN knock-in mouse lacking the PDZ motif, and a cell-permeable interfering peptide, we found that this mechanism is crucial for Aβ-induced synaptic toxicity and cognitive dysfunction. Our results provide fundamental information on the molecular mechanisms of Aβ-induced synaptic malfunction and may offer new mechanism-based therapeutic targets to counteract downstream Aβ signaling.


Neurobiology of Aging | 2013

Cellular prion protein modulates β-amyloid deposition in aged APP/PS1 transgenic mice

Lara Ordóñez-Gutiérrez; Juan Maria Torres; Rosalina Gavín; Marta Antón; Ana Isabel Arroba-Espinosa; Juan-Carlos Espinosa; Cristina Vergara; José Antonio del Río; Francisco Wandosell

Alzheimers disease and prion diseases are neuropathological disorders that are caused by abnormal processing and aggregation of amyloid and prion proteins. Interactions between amyloid precursor protein (APP) and PrP(c) proteins have been described at the neuron level. Accordingly to this putative interaction, we investigated whether β-amyloid accumulation may affect prion infectivity and, conversely, whether different amounts of PrP may affect β-amyloid accumulation. For this purpose, we used the APPswe/PS1dE9 mouse line, a common model of Alzheimers disease, crossed with mice that either overexpress (Tga20) or that lack prion protein (knock-out) to generate mice that express varying amounts of prion protein and deposit β-amyloid. On these mouse lines, we investigated the influence of each protein on the evolution of both diseases. Our results indicated that although the presence of APP/PS1 and β-amyloid accumulation had no effect on prion infectivity, the accumulation of β-amyloid deposits was dependent on PrP(c), whereby increasing levels of prion protein were accompanied by a significant increase in β-amyloid aggregation associated with aging.


Molecular Neurobiology | 2015

Role of PrP C Expression in Tau Protein Levels and Phosphorylation in Alzheimer's Disease Evolution

Cristina Vergara; Lara Ordóñez-Gutiérrez; Francisco Wandosell; Isidre Ferrer; J.A. Del Rio; Rosalina Gavín

Alzheimer’s disease (AD) is characterized by the presence of amyloid plaques mainly consisting of hydrophobic β-amyloid peptide (Aβ) aggregates and neurofibrillary tangles (NFTs) composed principally of hyperphosphorylated tau. Aβ oligomers have been described as the earliest effectors to negatively affect synaptic structure and plasticity in the affected brains, and cellular prion protein (PrPC) has been proposed as receptor for these oligomers. The most widely accepted theory holds that the toxic effects of Aβ are upstream of change in tau, a neuronal microtubule-associated protein that promotes the polymerization and stabilization of microtubules. However, tau is considered decisive for the progression of neurodegeneration, and, indeed, tau pathology correlates well with clinical symptoms such as dementia. Different pathways can lead to abnormal phosphorylation, and, as a consequence, tau aggregates into paired helical filaments (PHF) and later on into NFTs. Reported data suggest a regulatory tendency of PrPC expression in the development of AD, and a putative relationship between PrPC and tau processing is emerging. However, the role of tau/PrPC interaction in AD is poorly understood. In this study, we show increased susceptibility to Aβ-derived diffusible ligands (ADDLs) in neuronal primary cultures from PrPC knockout mice, compared to wild-type, which correlates with increased tau expression. Moreover, we found increased PrPC expression that paralleled with tau at early ages in an AD murine model and in early Braak stages of AD in affected individuals. Taken together, these results suggest a protective role for PrPC in AD by downregulating tau expression, and they point to this protein as being crucial in the molecular events that lead to neurodegeneration in AD.


Journal of Alzheimer's Disease | 2015

Peripheral Amyloid Levels Present Gender Differences Associated with Aging in AβPP/PS1 Mice

Lara Ordóñez-Gutiérrez; Marta Antón; Francisco Wandosell

The accumulation of amyloid-β (Aβ) peptide is one of the major neuropathological hallmarks of Alzheimers disease (AD). We have analyzed whether the progression of amyloidosis differentially affects males and females along aging in AβPP/PS1 transgenic mice. The levels of peripheral amyloid, Aβ40 and Aβ42, are not modified in either sex until 9 months of age. After that, however, there is an increase in amyloid levels in plasma among females and a decrease among males. These findings could be essential to design gender-specific strategies in other in vivo experiments or even in AD treatments.


Parasites & Vectors | 2014

Characterisation of the ex vivo virulence of Leishmania infantum isolates from Phlebotomus perniciosus from an outbreak of human leishmaniosis in Madrid, Spain.

Gustavo Domínguez-Bernal; Maribel Jiménez; Ricardo Molina; Lara Ordóñez-Gutiérrez; Abel Martínez-Rodrigo; Alicia Mas; María Teresa Cutuli; Javier Carrión

BackgroundSince mid 2009, an outbreak of human leishmaniosis in Madrid, Spain, has involved more than 560 clinical cases. Many of the cases occurred in people who live in areas around a newly constructed green park (BosqueSur). This periurban park provides a suitable habitat for sand flies (the vectors of Leishmania infantum). Indeed, studies of blood meals from sand flies captured in the area showed a strong association between the insect vector, hares or rabbits, and humans in the area. Interestingly, up to 70% of cases have been found in immunocompetent patients (aged between 46-60 years). This study was designed to evaluate the ex vivo virulence of the L. infantum isolates from Phlebotomus perniciosus captured in this area of Madrid.MethodsMurine macrophages and dendritic cells were infected ex vivo with L. infantum strain BCN150, isolate BOS1FL1, or isolate POL2FL7. At different times after infection, the infection indices, cytokine production (IL-12p40 and IL-10), NO release and arginase activities were evaluated.ResultsUsing an ex vivo model of infection in murine bone marrow-derived cells, we found that infection with isolates BOS1FL1 and POL2FL7 undermined host immune defence mechanisms in multiple ways. The main factors identified were changes in both the balance of iNOS versus arginase activities and the equilibrium between the production of IL-12 and IL-10. Infection with isolates BOS1FL1 and POL2FL7 also resulted in higher infection rates compared to the BCN150 strain. Infection index values at 24 h were as follows: BCN150-infected cells, 110 for infected MØ and 115 for infected DC; BOS1FL1-infected cells, 300 for infected MØ and 247 for infected DC; and POL2FL7-infected cells, 275 for infected MØ and 292 for infected DC.ConclusionsOur data indicate that L. infantum isolates captured from this endemic area exhibited high virulence in terms of infection index, cytokine production and enzymatic activities involved in the pathogenesis of visceral leishmaniosis. Altogether, these data provide a starting point for the study of the virulence behaviour of parasites (BOS1FL1 and POL2FL7) isolated from P. perniciosus during the outbreak of human leishmaniosis in Madrid, Spain, and their involvement in infecting immunocompetent hosts.


Veterinary Research | 2012

Mitigating an undesirable immune response of inherent susceptibility to cutaneous leishmaniosis in a mouse model: the role of the pathoantigenic HISA70 DNA vaccine

Gustavo Domínguez-Bernal; Pilar Horcajo; José A. Orden; Ricardo de la Fuente; Aldara Herrero-Gil; Lara Ordóñez-Gutiérrez; Javier Carrión

Leishmania major is the major cause of cutaneous leishmaniosis (CL) outside of the Americas. In the present study we have cloned six Leishmania genes (H2A, H2B, H3, H4, A2 and HSP70) into the eukaryotic expression vector pCMVβ-m2a, resulting in pCMV-HISA70m2A, which encodes all six pathoantigenic proteins as a single polyprotein. This expression plasmid has been evaluated as a novel vaccine candidate in the BALB/c mouse model of CL. The DNA vaccine shifted the immune response normally induced by L. major infection away from a Th2-specific pathway to one of basal susceptibility. Immunization with pCMV-HISA70m2A dramatically reduced footpad lesions and lymph node parasite burdens relative to infected control mice. Complete absence of visceral parasite burden was observed in all 12 immunized animals but not in any of the 24 control mice. Moreover, vaccinated mice produced large amounts of IFN-γ, IL-17 and NO at 7 weeks post-infection (pi), and they showed lower arginase activity at the site of infection, lower IL-4 production and a weaker humoral immune response than infected control mice. Taken together, these results demonstrate the ability of the HISA70 vaccine to shift the murine immune response to L. major infection away from an undesirable, Th2-specific pathway to a less susceptible-like pathway involving Th1 and Th17 cytokine profiles.


Journal of Alzheimer's Disease | 2016

AβPP/PS1 Transgenic Mice Show Sex Differences in the Cerebellum Associated with Aging.

Lara Ordóñez-Gutiérrez; Ivan Fernandez-Perez; Jose Luis Herrera; Marta Antón; Irene Benito-Cuesta; Francisco Wandosell

Cerebellar pathology has been related to presenilin 1 mutations in certain pedigrees of familial Alzheimers disease. However, cerebellum tissue has not been intensively analyzed in transgenic models of mutant presenilins. Furthermore, the effect of the sex of the mice was not systematically analyzed, despite the fact that important gender differences in the evolution of the disease in the human population have been described. We analyzed whether the progression of amyloidosis in a double transgenic mouse, AβPP/PS1, is susceptible to aging and differentially affects males and females. The accumulation of amyloid in the cerebellum differentially affects males and females of the AβPP/PS1 transgenic line, which was found to be ten-fold higher in 15-month-old females. Amyloid-β accumulation was more evident in the molecular layer of the cerebellum, but glia reaction was only observed in the granular layer of the older mice. The sex divergence was also observed in other neuronal, survival, and autophagic markers. The cerebellum plays an important role in the evolution of the pathology in this transgenic mouse model. Sex differences could be crucial for a complete understanding of this disease. We propose that the human population could be studied in this way. Sex-specific treatment strategies in human populations could show a differential response to the therapeutic approach.


Pharmaceutical Research | 2018

Dihydroceramide Desaturase 1 Inhibitors Reduce Amyloid-β Levels in Primary Neurons from an Alzheimer’s Disease Transgenic Model

Lara Ordóñez-Gutiérrez; Irene Benito-Cuesta; José Luis Abad; Josefina Casas; Gemma Fabriàs; Francisco Wandosell

ABSTRACTPurposeThe induction of autophagy has recently been explored as a promising therapeutic strategy to combat Alzheimer’s disease. Among many other factors, there is evidence that ceramides/dihydroceramides act as mediators of autophagy, although the exact mechanisms underlying such effects are poorly understood. Here, we describe how two dihydroceramide desaturase inhibitors (XM461 and XM462) trigger autophagy and reduce amyloid secretion by neurons.MethodsNeurons isolated from wild-type and APP/PS1 transgenic mice were exposed to the two dihydroceramide desaturase inhibitors to assess their effect on these cell’s protein and lipid profiles.ResultsBoth dihydroceramide desaturase inhibitors increased the autophagic vesicles in wild-type neurons, reflected as an increase in LC3-II, and this was correlated with the accumulation of dihydroceramides and dihydrosphingomyelins. Exposing APP/PS1 transgenic neurons to these inhibitors also produced a 50% reduction in amyloid secretion and/or production. The lipidomic defects triggered by these dihydroceramide desaturase inhibitors were correlated with a loss of S6K activity, witnessed by the changes in S6 phosphorylation, which strongly suggested a reduction of mTORC1 activity.ConclusionsThe data obtained strongly suggest that dihydroceramide desaturase 1 activity may modulate autophagy and mTORC1 activity in neurons, inhibiting amyloid secretion and S6K activity. As such, it is tantalizing to propose that dihydroceramide desaturase 1 may be an important therapeutic target to combat amyloidosis.


Frontiers in Cellular Neuroscience | 2018

Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex

Jose Luis Herrera; Lara Ordóñez-Gutiérrez; Gemma Fabriàs; Josefina Casas; Araceli Morales; Guadalberto Hernández; Nieves Guadalupe Acosta; C. Rodríguez; Luis Prieto-Valiente; Luis Miguel Garcia-Segura; Rafael Alonso; Francisco Wandosell

Different dietary ratios of n−6/n−3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n−6/n−3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n−3 and n−6 LC-PUFAs.


Archive | 2015

Males vs females: differences in the AB accumulation

Lara Ordóñez-Gutiérrez; Iván Fernández; Marta Antón; Francisco Wandosell

The homeobox gene extradenticle (exd) acts as a cofactor of the homeotic genes in the specification of larval patterns during embryogenesis. To study its role in adult patterns, we have generated clones of mutant exd- cells and examined their effect on the different body parts. In some regions, exd- clones exhibit homeotic transformations similar to those produced by known homeotic mutations such as Ultrabithorax (Ubx), labial (lab), spineless-aristapedia (ssa) or Antennapedia (Antp). In other regions, the lack of exd causes novel homeotic transformations producing ectopic eyes and legs. Moreover, exd is also required for functions normally not associated with homeosis, such as the maintenance of the dorsoventral pattern, the specification of subpatterns in adult appendages or the arrangement of bristles in the mesonotum and genitalia. Our findings indicate that exd is critically involved in adult morphogenesis, not only in the homeotic function but also in several other developmental processes.Previously published experiments have shown that the endogenous Dfd gene can be ectopically activated by its own (heat-shock-driven) product in a subset of cells of different segments. This results in the differentiation of maxillary structures like cirri and mouth hooks in places where they normally do not appear, and represents a phenomenon of autocatalysis of homeotic gene function that differs from the normal activation process. We show that this out-of-context activation occurs in cells belonging to the anterior compartments of the three thoracic and the A1 to A8 abdominal segments and that it requires the normal function of the polarity genes wingless (wg) and engrailed (en). The wg product, in addition to that of Dfd, appears to be sufficient to activate the endogenous Dfd gene in many embryonic cells. We have studied the effect of several homeotic genes on Dfd activation and phenotypic expression: Scr, Antp, Ubx and Abd-B repress Dfd both transcriptionally and at the phenotypic level, if their products are in sufficient amounts. The endogenous abd-A gene does not have a noticeable effect, but when it is replaced by an hsp70-abd-A gene, which produces a high and uniform level of expression, the phenotypic expression of Dfd is suppressed. Our results also suggest that the differentiation of cirri is induced by Dfd-expressing cells in non-expressing neighboring cells, and that this interaction occurs across the parasegmental border.During evolution, many animal groups have developed specialised outgrowths of the body wall, limbs or appendages. The type of appendage depends on the identity of the segment where they appear, indicating that the Hox genes contribute to appendage specification. Moreover, work carried out principally in Drosophila has identified the gene products and the mechanisms involved in pattern formation in the appendages. In this essay, we compare the morphogenetic processes in the appendages and the body wall; the function of the Hox genes and the response to the signalling molecules involved in local patterning. We speculate that, although the basic mechanisms are similar, there are significant differences in the manner the body trunk and appendages respond to them.[ES] La pared celular es un elemento morfogenetico esencial que determina la forma final de las celulas y que las protege contra la lisis. En S. pombe esta esta constituida por ? y s-glucano y manoproteinas y tanto la sintesis como remodelacion de su estructura requiere de diferentes enzimas estrictamente reguladas. En S. pombe existe poca informacion de como se lleva a cabo la incorporacion del material de membrana y sobre la regulacion de las enzimas implicadas en la sintesis y remodelacion de la pared celular por los mecanismos de transporte vesicular. Para abordar el estudio de como el trafico vesicular mediado por clatrina afecta a la morfogenesis de S. pombe y en particular cual es su papel en la regulacion de la sintesis de la pared celular se ha analizado el papel tanto de la clatrina, mediante el analisis de diferentes mutantes de la cadena ligera de la clatrina, como el del adaptador AP-2, que interviene en el proceso de endocitosis mediada por clatrina. Se ha demostrado que la delecion de la cadena ligera de la clatrina resulta letal para las celulas de S. pombe y que esta letalidad se rescata al incubar las celulas en un medio suplementado con sorbitol. En este caso aunque las celulas pueden sobrevivir poseen graves defectos morfologicos, en crecimiento, en trafico vesicular, en desarrollo sexual, etc. Se ha podido comprobar que la ausencia de Clc1p afecta drasticamente a la estabilidad de Chc1p hecho que hace que, a diferencia de otros organismos, la supervivencia de S. pombe sea mas dependiente de la presencia clatrina. Ademas se ha demostrado que la letalidad causada por la ausencia de Clc1p se debe principalmente a defectos graves en la sintesis de la pared celular que afectan directamente a la sintesis del glucano. Los resultados obtenidos muestran que una reduccion en la cantidad de clatrina causa un leve impacto en el transporte vesicular en general y en otros procesos y elementos biologicos, pero afecta gravemente a la secrecion de enzimas de sintesis/remodelacion de la pared celular, como las s(1,3)glucan sintasa y endoglucanasas. En cuanto al complejo adaptador AP-2 se ha comprobado, que a diferencia de lo que se conoce hasta el momento en otros organismos unicelulares, este forma un complejo con la clatrina y se ha demostrado que tiene un papel en la endocitosis general de S. pombe. Asi mismo se ha descubierto que AP-2 puede estar interviniendo en la sintesis de la pared celular ya que su ausencia afecta a la actividad s-glucan sintasa y hace que S. pombe sea hiper-sensible a compuestos que afectan a la integridad de la pared celular.We characterized a novel protein of the Ras family, p19 (H-RasIDX). The c-H-ras proto-oncogene undergoes alternative splicing of the exon termed IDX. We show that the alternative p19 mRNA is stable and as abundant as p21 (p21 H-Ras4A) mRNA in all of the human tissues and cell lines tested. IDX is spliced into stable mRNA in different mammalian species, which present a high degree of nucleotide conservation. Both the endogenous and the transiently expressed p19 protein are detected in COS-1 and HeLa cells and show nuclear diffuse and speckled patterns as well as cytoplasmic localization. In yeast two-hybrid assays, p19 did not interact with two known p21 effectors, Raf1 and Rin1, but was shown to interact with RACK1, a scaffolding protein that promotes multiprotein complexes in different signaling pathways. This observation suggests that p19 and p21 play differential and complementary roles in the cell.Resumen del trabajo presentado al Congreso Nacional de Biotecnologia, celebrado en Murcia del 18 al 21 de junio de 2017.A. G. G. thanks Ramon Areces Foundation for a grant. J. C. thanks NIH-CA24487 for financial support.Ministerio de Educacion y Ciencia and grant S-0505/MAT-0283 from Comunidad Autonoma de Madrid to M.S. and by an Institutional grant from Fundacion Ramon Areces to the Centro de Biologia Molecular “Severo Ochoa”We report a genetic and molecular study of UbxMX6 and Ubx195rx1, two mutations in the Ultrabithorax (Ubx) locus which appear to have a strong effect on the activity of the homologous Ubx gene. These mutations show the characteristic embryonic and adult phenotypes of Ubx null alleles, and also fail to produce any detectable Ubx product. Yet, genetic and phenotypic analyses involving a large number of trans heterozygous combinations of UbxMX6 and Ubx195rx1 with different classes of Ubx mutations, indicate that they hyperactivate the homologous gene. This effect is induced on wildtype or mutant forms of Ubx, provided that the pairing in the bithorax region is normal, i.e. these mutations have a strong positive effect on transvection. We also show that, unlike all the other known cases of transvection in Ubx, this is not zeste-dependent. Southern analyses indicate that UbxMX6 is a 3.4 kb deletion, and Ubx195rx1 is an approximately 11 kb insertion of foreign DNA, both in the promoter region. We speculate that the region altered in the mutations may have a wildtype function to ensure cis-autonomy of the regulation of Ubx transcription.Resumen del trabajo presentado al Congreso Nacional de Biotecnologia, celebrado en Murcia del 18 al 21 de junio de 2017.The pannier (pnr) gene of Drosophila encodes a zinc-finger transcription factor of the GATA family and is involved in several developmental processes during embryonic and imaginal development. We report some novel aspects of the regulation and function of pnr during embryogenesis. Previous work has shown that pnr is activated by decapentaplegic (dpp) in early development, but we find that after stage 10, the roles are reversed and pnr becomes an upstream regulator of dpp. This function of pnr is necessary for the activation of the Dpp pathway in the epidermal cells implicated in dorsal closure and is not mediated by the JNK pathway, which is also necessary for Dpp activity in these cells. In addition, we show that pnr behaves as a selector-like gene in generating morphological diversity in the dorsoventral body axis. It is responsible for maintaining a subdivision of the dorsal half of the embryo into two distinct, dorsomedial and dorsolateral, regions, and also specifies the identity of the dorsomedial region. These results, together with prior work on its function in adults, suggest that pnr is a major factor in the genetic subdivision of the body of Drosophila.10th International Symposium on Reproductive Physiology of Fish (10th ISRPF), Expanding the khowledge base of reproductive success: from genes to the environment, 25-30 May 2014, Olhao, Portugal.-- 1 pageBy using a hsp70-Ubx fusion gene, we have ectopically expressed a Ubx product in the embryonic head primordia and studied the developmental effects on the larval head. We find that after high and persistent levels of Ubx product, the head is replaced by three (C1, C2 and C3) abdominal-like denticle belts. The C2 and C3 belts are the homeotic transformations of parasegments 1 and 2, respectively, while the C1 belt probably derives from the transformation and subsequent fusion of the most anterior procephalic primordia. On the basis of their response to the Ubx product and other arguments, we propose that the larval head is made of two genetically distinct components; one is the procephalon and the anterior region of the mandibular lobe, and the other is part of the parasegmental trunk and includes parasegments 1 and 2. Our results also indicate that most or all the larval head structures derive from precursor cells of ventral origin.The Iroquois (Iro) family of genes are found in nematodes, insects and vertebrates. They usually occur in one or two genomic clusters of three genes each and encode transcriptional controllers that possess a characteristic homeodomain. The Iro genes function early in development to specify the identity of diverse territories of the body, such as the dorsal head and dorsal mesothorax of Drosophila and the neural plate of Xenopus. In some aspects they act in the same way as classical selector genes, but they display specific properties that place them into a category of their own. Later in development in both Drosophila and vertebrates, the Iro genes function again to subdivide those territories into smaller domains.The pannier (pnr) gene encodes a GATA transcription factor and acts in several developmental processes in Drosophila, including embryonic dorsal closure, specification of cardiac cells and bristle determination. We show that pnr is expressed in the mediodorsal parts of thoracic and abdominal segments of embryos, larvae and adult flies. Its activity confers cells with specific adhesion properties that make them immiscible with non-expressing cells. Thus there are two genetic domains in the dorsal region of each segment: a medial (MED) region where pnr is expressed and a lateral (LAT) region where it is not. The homeobox gene iroquois (iro) is expressed in the LAT region. These regions are not formed by separate polyclones of cells, but are defined topographically. We show that ectopic pnr in the wing induces MED thoracic development, indicating that pnr specifies the identity of the MED regions. Correspondingly, when pnr is removed from clones of cells in the MED domain, they sort out and apparently adopt the LAT fate. We propose that (1) the subdivision into MED and LAT regions is a general feature of the Drosophila body plan and (2) pnr is the principal gene responsible for this subdivision. We argue that pnr acts like a classical selector gene but differs in that its expression is not propagated through cell divisions.We have developed a specific polyclonal antibody that recognizes the protein products of the abdominal-A (abd-A) gene, a member of the bithorax complex of Drosophila. The normal expression domain extends from parasegments 7 to 13, in good correspondence with previous genetic and molecular results. However, while the anterior border of expression is precisely demarcated by a parasegmental boundary, the posterior border does not coincide with a lineage boundary. Within the normal domain, the expression of abd-A shows intrametameric modulation; the amount of product is higher in posterior compartments and in the most anterior cells of the anterior compartments and then gradually decreases. We have examined the effect on abd-A expression of a number of mutations, some mapping within and others outside the abd-A transcription unit. Those mapping to the transcription unit eliminate or severely reduce the amount of abd-A antigen, while those mapping outside produce an abnormal distribution of abd-A protein. Finally, we show that the abd-A gene is down-regulated in part of the Abdominal-B (Abd-B) domain, precisely in those regions where the Abd-B gene is expressed at high levels.Resumen del trabajo presentado al Yeast Genetics Meeting, celebrado en Stanford, California (USA) del 22 al 26 de agosto de 2018.The effect of the anti-tumoral drug lauryl gallate on the infectivity of the African swine fever virus among other DNA (Herpes simplex and Vaccinia) and RNA (Influenza, Porcine transmissible gastroenteritis and Sindbis) viruses, involved in animal and human diseases, is analyzed. Viral production was strongly inhibited in different cell lines at non-toxic concentrations of the drug (1-10 μM), reducing the titres from 3 to more than 5 log. units depending on the multiplicity of infection. In our model system (African swine fever virus in Vero cells), the addition of the drug 1 h before virus adsorption, completely abolished virus productivity in a one-step growth virus cycle. Interestingly, no inhibitory effect was observed when lauryl gallate was added after 5 to 8 hpi. Both cellular and viral DNA synthesis and late viral transcription were inhibited by the drug, but, however, the early viral protein synthesis and the virus-mediated increasing of p53 remained unaffected. Activation of the apoptotic effector caspase-3 was not detected after lauryl gallate treatment of Vero cells, and, furthermore, the presence of the drug abrogated the activation of this protease induced by the virus infection. The overall results likely indicate that a cellular factor/function might be the target of the antiviral action of alkyl gallates.Tesis Doctoral presentada por Eduardo Rodenas Martinez en el Centro Andaluz de Biologia del Desarrollo, centro mixto CSIC-UPO.Resumen del trabajo presentado al Yeast Genetics Meeting, celebrado en Stanford, California (USA) del 22 al 26 de agosto de 2018.

Collaboration


Dive into the Lara Ordóñez-Gutiérrez's collaboration.

Top Co-Authors

Avatar

Francisco Wandosell

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marta Antón

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gustavo Domínguez-Bernal

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Javier Carrión

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Re

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Abel Martínez-Rodrigo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Alicia Mas

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge