Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lara Reale is active.

Publication


Featured researches published by Lara Reale.


Plant Physiology | 2006

Interaction between Nitric Oxide and Ethylene in the Induction of Alternative Oxidase in Ozone-Treated Tobacco Plants

Luisa Ederli; Roberta Morettini; Andrea Borgogni; Claus Wasternack; Otto Miersch; Lara Reale; Francesco Ferranti; Nicola Tosti; Stefania Pasqualini

The higher plant mitochondrial electron transport chain contains, in addition to the cytochrome chain, an alternative pathway that terminates with a single homodimeric protein, the alternative oxidase (AOX). We recorded temporary inhibition of cytochrome capacity respiration and activation of AOX pathway capacity in tobacco plants (Nicotiana tabacum L. cv BelW3) fumigated with ozone (O3). The AOX1a gene was used as a molecular probe to investigate its regulation by signal molecules such as hydrogen peroxide, nitric oxide (NO), ethylene (ET), salicylic acid, and jasmonic acid (JA), all of them reported to be involved in the O3 response. Fumigation leads to accumulation of hydrogen peroxide in mitochondria and early accumulation of NO in leaf tissues. Although ET accumulation was high in leaf tissues 5 h after the start of O3 fumigation, it declined during the recovery period. There were no differences in the JA and 12-oxo-phytodienoic acid levels of treated and untreated plants. NO, JA, and ET induced AOX1a mRNA accumulation. Using pharmacological inhibition of ET and NO, we demonstrate that both NO- and ET-dependent pathways are required for O3-induced up-regulation of AOX1a. However, only NO is indispensable for the activation of AOX1a gene expression.


Plant Physiology | 2003

Ozone-Induced Cell Death in Tobacco Cultivar Bel W3 Plants. The Role of Programmed Cell Death in Lesion Formation

Stefania Pasqualini; Claudia Piccioni; Lara Reale; Luisa Ederli; Guido Della Torre; Francesco Ferranti

Treatment of the ozone-sensitive tobacco (Nicotiana tabacum L. cv Bel W3) with an ozone pulse (150 nL L–1 for 5 h) induced visible injury, which manifested 48 to 72 h from onset of ozone fumigation. The “classical” ozone symptoms in tobacco cv Bel W3 plants occur as sharply defined, dot-like lesions on the adaxial side of the leaf and result from the death of groups of palisade cells. We investigated whether this reaction had the features of a hypersensitive response like that which results from the incompatible plant-pathogen interaction. We detected an oxidative burst, the result of H2O2 accumulation at 12 h from the starting of fumigation. Ozone treatment induced deposition of autofluorescent compounds and callose 24 h from the start of treatment. Total phenolic content was also strongly stimulated at the 10th and 72nd h from starting fumigation, concomitant with an enhancement in phenylalanine ammonia-lyase a and phenylalanine ammonia-lyase b expression, as evaluated by reverse transcriptase-polymerase chain reaction. There was also a marked, but transient, increase in the mRNA level of pathogenesis-related-1a, a typical hypersensitive response marker. Overall, these results are evidence that ozone triggers a hypersensitive response in tobacco cv Bel W3 plants. We adopted four criteria for detecting programmed cell death in ozonated tobacco cv Bel W3 leaves: (a) early release of cytochrome c from mitochondria; (b) activation of protease; (c) DNA fragmentation by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling of DNA 3′-OH groups; and (d) ultrastructural changes characteristic of programmed cell death, including chromatin condensation and blebbing of plasma membrane. We, therefore, provide evidence that ozone-induced oxidative stress triggers a cell death program in tobacco cv Bel W3.


The Plant Cell | 2004

Downregulation of the Petunia hybrida α-Expansin Gene PhEXP1 Reduces the Amount of Crystalline Cellulose in Cell Walls and Leads to Phenotypic Changes in Petal Limbs

Sara Zenoni; Lara Reale; Giovanni Battista Tornielli; Luisa Lanfaloni; Andrea Porceddu; Alberto Ferrarini; Chiaraluce Moretti; Anita Zamboni; Adolfo Speghini; Francesco Ferranti; Mario Pezzotti

The expansins comprise a family of proteins that appear to be involved in the disruption of the noncovalent bonds between cellulose microfibrils and cross-linking glycans, thereby promoting wall creep. To understand better the expansion process in Petunia hybrida (petunia) flowers, we isolated a cDNA corresponding to the PhEXP1 α-expansin gene of P. hybrida. Evaluation of the tissue specificity and temporal expression pattern demonstrated that PhEXP1 is preferentially expressed in petal limbs during development. To determine the function of PhEXP1, we used a transgenic antisense approach, which was found to cause a decrease in petal limb size, a reduction in the epidermal cell area, and alterations in cell wall morphology and composition. The diminished cell wall thickness accompanied by a reduction in crystalline cellulose indicates that the activity of PhEXP1 is associated with cellulose metabolism. Our results suggest that expansins play a role in the assembly of the cell wall by affecting either cellulose synthesis or deposition.


Nature Cell Biology | 2008

An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour

Walter Verweij; Cornelis Spelt; Gian Pietro Di Sansebastiano; Joop E. M. Vermeer; Lara Reale; Francesco Ferranti; Ronald Koes; Francesca Quattrocchio

The regulation of pH in cellular compartments is crucial for intracellular trafficking of vesicles and proteins and the transport of small molecules, including hormones. In endomembrane compartments, pH is regulated by vacuolar H+-ATPase (V-ATPase), which, in plants, act together with H+-pyrophosphatases (PPase), whereas distinct P-type H+-ATPases in the cell membrane control the pH in the cytoplasm and energize the plasma membrane. Flower colour mutants have proved useful in identifying genes controlling the pH of vacuoles where anthocyanin pigments accumulate. Here we show that PH5 of petunia encodes a P3A-ATPase proton pump that, unlike other P-type H+-ATPases, resides in the vacuolar membrane. Mutation of PH5 reduces vacuolar acidification in petals, resulting in a blue flower colour and abolishes the accumulation of proanthocyanindins (condensed tannins) in seeds. Expression of PH5 is directly activated by transcription regulators of the anthocyanin pathway, in conjunction with PH3 and PH4. Thus, flower coloration, a key-factor in plant reproduction, involves the coordinated activation of pigment synthesis and a specific pathway for vacuolar acidification.


Plant Physiology | 2005

SERK and APOSTART. Candidate genes for apomixis in Poa pratensis

Emidio Albertini; Gianpiero Marconi; Lara Reale; Gianni Barcaccia; Andrea Porceddu; Francesco Ferranti; Mario Falcinelli

Seed production generally requires the mating of opposite sex gametes. Apomixis, an asexual mode of reproduction, avoids both meiotic reduction and egg fertilization. The essential feature of apomixis is that an embryo is formed autonomously by parthenogenesis from an unreduced egg of an embryo sac generated through apomeiosis. If apomixis were well understood and harnessed, it could be exploited to indefinitely propagate superior hybrids or specific genotypes bearing complex gene sets. A more profound knowledge of the mechanisms that regulate reproductive events would contribute fundamentally to understanding the genetic control of the apomictic pathway. In Poa pratensis, we isolated and characterized two genes, PpSERK (SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE) and APOSTART. These full-length genes were recovered by rapid amplification of cDNA ends and their temporal and spatial expression patterns were assessed by reverse transcription-polymerase chain reaction and in situ hybridization, respectively. The expression of PpSERK and APOSTART differed in apomictic and sexual genotypes. Their putative role in cell-signaling transduction cascades and trafficking events required during sporogenesis, gametogenesis, and embryogenesis in plants is reported and discussed. We propose that, in nucellar cells of apomictic genotypes, PpSERK is the switch that channels embryo sac development and that it may also redirect signaling gene products to compartments other than their typical ones. The involvement of APOSTART in meiosis and programmed cell death is also discussed.


Plant Physiology and Biochemistry | 2009

NO release by nitric oxide donors in vitro and in planta

Luisa Ederli; Lara Reale; Laura Madeo; Francesco Ferranti; Chris Gehring; Marco Fornaciari; Bruno Romano; Stefania Pasqualini

Artificial nitric oxide (NO) donors are widely used as tools to study the role of NO in plants. However, reliable and reproducible characterisation of metabolic responses induced by different NO donors is complicated by the variability of their NO release characteristics. The latter are affected by different physical and biological factors including temperature and light. Here we critically evaluate NO release characteristics of the donors sodium nitroprusside (SNP), S-nitrosoglutathione (GSNO) and nitric oxide synthase (NOS), both in vitro and in planta (Nicotiana tabacum L. cv. BelW3) and assess their effects on NO dependent processes such as the transcriptional regulation of the mitochondrial alternative oxidase gene (AOX1a), accumulation of H(2)O(2) and induction of cell death. We demonstrate that, contrary to NOS and SNP, GSNO is not an efficient NO generator in leaf tissue. Furthermore, spectrophotometric measurement of NO with a haemoglobin assay, rather than diaminofluorescein (DAF-FM) based detection, is best suited for the quantification of tissue NO. In spite of the different NO release signatures by SNP and NOS in tissue, the NO dependent responses examined were similar, suggesting that there is a critical threshold for the NO response.


Sexual Plant Reproduction | 2001

Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation

Emidio Albertini; A. Porceddu; Francesco Ferranti; Lara Reale; Gianni Barcaccia; Bruno Romano; Mario Falcinelli

Despite the potential that apomixis has for agriculture, there is little information regarding the genetic control of its functional components. We carried out a cytohistological investigation on an F1 segregating population of Poa pratensis obtained from a cross between a sexual and an apomictic parent. About half of the F1 progeny plants were parthenogenic, as adjudicated by an auxin test. The degree of parthenogenesis ranged from 1.44% to 92.9%. Apospory was detected in parthenogenetic plants as well as in two non-parthenogenetic individuals. These results indicate that two distinct genetic factors control apospory and parthenogenesis in P. pratensis and that apospory and parthenogenesis may be developmentally uncoupled


Sexual Plant Reproduction | 2002

Patterns of cell division and expansion in developing petals of Petunia hybrida

Lara Reale; Andrea Porceddu; Luisa Lanfaloni; Chiaraluce Moretti; Sara Zenoni; Mario Pezzotti; Bruno Romano; Francesco Ferranti

Abstract. The definition of the patterns of cell division and expansion in plant development is of fundamental importance in understanding the mechanics of morphogenesis. By studying cell division and expansion patterns, we have assembled a developmental map of Petunia hybrida petals. Cycling cells were labelled with in situ markers of the cell cycle, whereas cell expansion was followed by assessing cell size in representative regions of developing petals. The outlined cell division and expansion patterns were related to organ asymmetry. Initially, cell divisions are uniformly distributed throughout the petal and decline gradually, starting from the basal part, to form a striking gradient of acropetal polarity. Cell areas, in contrast, increased first in the basal portion and then gradually towards the petal tip. This growth strategy highlighted a cell size control model based on cell-cycle departure time. The dorso-ventral asymmetry can be explained in terms of differential regulation of cell expansion. Cells of the abaxial epidermis enlarged earlier to a higher final extent than those of the adaxial epidermis. Epidermal appendage differentiation contributed to the remaining asymmetry. On the whole our study provides a sound basis for mutant analyses and to investigate the impact of specific (environmental) factors on petal growth.


Sexual Plant Reproduction | 2006

Reproductive biology of Olive (Olea europaea L.) DOP Umbria cultivars

Lara Reale; Carlo Sgromo; Tommaso Bonofiglio; Fabio Orlandi; Marco Fornaciari; Francesco Ferranti; Bruno Romano

Olive trees have a plentiful bloom but a low percentage of normal fruit set. To improve fruit set, numerous investigations have sought to identify the obstacles that prevent full production. In this work, flower development in five DOP Umbria cultivars (Leccino, Frantoio, Moraiolo, Dolce Agogia and San Felice) was studied throughout different developmental phases, from before microsporogenesis and megasporogenesis to post-anthesis, by morphological and cyto-histological observations. Dolce Agogia was the most precocious cultivar, while full flowering was simultaneous in Leccino, Frantoio, Moraiolo and San Felice. Frantoio and Leccino were also good pollen producers, having the highest percentage of pollen viability and germinability. Dolce Agogia can also be considered a good pollen producer in terms of the high quantity of released pollen, but it had the lowest levels of pollen viability and germinability and the highest percentage of aborted flowers and ovaries. Morphological and cyto-histological observations on the number of flowers per inflorescence and the number of aborted flowers and ovaries suggest that fruit set was not influenced by the number of flowers per inflorescence, but rather by the number of inflorescences, which depends on the global fruiting potential of the tree.


Sexual Plant Reproduction | 2009

Morphological and cytological development and starch accumulation in hermaphrodite and staminate flowers of olive (Olea europaea L.)

Lara Reale; Carlo Sgromo; Luisa Ederli; Stefania Pasqualini; Fabio Orlandi; Marco Fornaciari; Francesco Ferranti; Bruno Romano

In olive (Olea europaea L.), the formation of functionally staminate flowers rather than fully functional hermaphrodites is one of the major factors limiting fruit set, as flowers with aborted pistils are incapable of producing fruit. Studies conducted on various angiosperm species have shown a correlation between flower abortion and starch content. Thus, it is important to know if starch content plays a role in regulating pistil development in olive and if so, what mechanism regulates starch distribution. Cyto-histological observations of staminate and hermaphrodite olive flowers show that pistil development in staminate flowers is interrupted after the differentiation of the megaspore mother cell. At that stage, starch grains were only detected in the ovary, style and stigma of the hermaphrodite flowers. No starch was observed in the pistils of the staminate flowers. This finding suggests a tight correlation between starch content and pistil development. The secondary origin of starch within the flower is indicated by low chlorophyll content in the gynoecium, undetectable Rubisco activity in the pistils of these two kinds of flowers and by the ultrastructure of the plastids observed by transmission electron microscope analysis. The plastids have few thylakoid membranes and grana and in the staminate flowers appeared very similar to proplastids. Considering differences in starch content between staminate and hermaphrodite flowers and the secondary origin of the starch, differences in pistil development in the staminate and hermaphrodite flowers could be related to differences in the sink strength of these two types of flowers.

Collaboration


Dive into the Lara Reale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Foggi

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge