Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lara Stevanato is active.

Publication


Featured researches published by Lara Stevanato.


Experimental Neurology | 2006

A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke

Kenneth Pollock; Paul Stroemer; Sara Patel; Lara Stevanato; Andrew Hope; Erik Miljan; Ziping Dong; Helen Hodges; Jack Price; John Sinden

Transplantation of neural stem cells into the brain is a novel approach to the treatment of chronic stroke disability. For clinical application, safety and efficacy of defined, stable cell lines produced under GMP conditions are required. To this end, a human neural stem cell line, CTX0E03, was derived from human somatic stem cells following genetic modification with a conditional immortalizing gene, c-mycER(TAM). This transgene generates a fusion protein that stimulates cell proliferation in the presence of a synthetic drug 4-hydroxy-tamoxifen (4-OHT). The cell line is clonal, expands rapidly in culture (doubling time 50-60 h) and has a normal human karyotype (46 XY). In the absence of growth factors and 4-OHT, the cells undergo growth arrest and differentiate into neurons and astrocytes. Transplantation of CTX0E03 in a rat model of stroke (MCAo) caused statistically significant improvements in both sensorimotor function and gross motor asymmetry at 6-12 weeks post-grafting. In addition, cell migration and long-term survival in vivo were not associated with significant cell proliferation. These data indicate that CTX0E03 has the appropriate biological and manufacturing characteristics necessary for development as a therapeutic cell line.


Circulation Research | 2009

Human CD133 + Progenitor Cells Promote the Healing of Diabetic Ischemic Ulcers by Paracrine Stimulation of Angiogenesis and Activation of Wnt Signaling

Luciola S Barcelos; Cécile Duplàa; Nicolle Kränkel; Gallia Graiani; Gloria Invernici; Rajesh Katare; Mauro Siragusa; Marco Meloni; Ilaria Campesi; Manuela Monica; Andreas Simm; Paola Campagnolo; Giuseppe Mangialardi; Lara Stevanato; Giulio Alessandri; Costanza Emanueli; Paolo Madeddu

We evaluated the healing potential of human fetal aorta–derived CD133+ progenitor cells and their conditioned medium (CD133+ CCM) in a new model of ischemic diabetic ulcer. Streptozotocin-induced diabetic mice underwent bilateral limb ischemia and wounding. One wound was covered with collagen containing 2×104 CD133+ or CD133− cells or vehicle. The contralateral wound, covered with only collagen, served as control. Fetal CD133+ cells expressed high levels of wingless (Wnt) genes, which were downregulated following differentiation into CD133− cells along with upregulation of Wnt antagonists secreted frizzled-related protein (sFRP)-1, -3, and -4. CD133+ cells accelerated wound closure as compared with CD133− or vehicle and promoted angiogenesis through stimulation of endothelial cell proliferation, migration, and survival by paracrine effects. CD133+ cells secreted high levels of vascular endothelial growth factor (VEGF)-A and interleukin (IL)-8. Consistently, CD133+ CCM accelerated wound closure and reparative angiogenesis, with this action abrogated by coadministering the Wnt antagonist sFRP-1 or neutralizing antibodies against VEGF-A or IL-8. In vitro, these effects were recapitulated following exposure of high-glucose-primed human umbilical vein endothelial cells to CD133+ CCM, resulting in stimulation of migration, angiogenesis-like network formation and induction of Wnt expression. The promigratory and proangiogenic effect of CD133+ CCM was blunted by sFRP-1, as well as antibodies against VEGF-A or IL-8. CD133+ cells stimulate wound healing by paracrine mechanisms that activate Wnt signaling pathway in recipients. These preclinical findings open new perspectives for the cure of diabetic ulcers.


Stem Cells | 2012

Implantation Site and Lesion Topology Determine Efficacy of a Human Neural Stem Cell Line in a Rat Model of Chronic Stroke

Edward J. Smith; R. Paul Stroemer; Natalia Gorenkova; Mitsuko Nakajima; William R. Crum; Ellen Tang; Lara Stevanato; John Sinden; Michel Modo

Stroke remains one of the most promising targets for cell therapy. Thorough preclinical efficacy testing of human neural stem cell (hNSC) lines in a rat model of stroke (transient middle cerebral artery occlusion) is, however, required for translation into a clinical setting. Magnetic resonance imaging (MRI) here confirmed stroke damage and allowed the targeted injection of 450,000 hNSCs (CTX0E03) into peri‐infarct tissue, rather than the lesion cyst. Intraparenchymal cell implants improved sensorimotor dysfunctions (bilateral asymmetry test) and motor deficits (footfault test and rotameter). Importantly, analyses based on lesion topology (striatal vs. striatal + cortical damage) revealed a more significant improvement in animals with a stroke confined to the striatum. However, no improvement in learning and memory (water maze) was evident. An intracerebroventricular injection of cells did not result in any improvement. MRI‐based lesion, striatal and cortical volumes were unchanged in treated animals compared to those with stroke that received an intraparenchymal injection of suspension vehicle. Grafted cells only survived after intraparenchymal injection with a striatal + cortical topology resulting in better graft survival (16,026 cells) than in animals with smaller striatal lesions (2,374 cells). Almost 20% of cells differentiated into glial fibrillary acidic protein+ astrocytes, but <2% turned into FOX3+ neurons. These results indicate that CTX0E03 implants robustly recover behavioral dysfunction over a 3‐month time frame and that this effect is specific to their site of implantation. Lesion topology is potentially an important factor in the recovery, with a stroke confined to the striatum showing a better outcome compared to a larger area of damage. STEM CELLS 2012; 30:785–796


Cell Transplantation | 2007

Making stem cell lines suitable for transplantation.

Helen Hodges; Kenneth Pollock; Paul Stroemer; Sara Patel; Lara Stevanato; Iris Reuter; John Sinden

Human stem cells, progenitor cells, and cell lines have been derived from embryonic, fetal, and adult sources in the search for graft tissue suitable for the treatment of CNS disorders. An increasing number of experimental studies have shown that grafts from several sources survive, differentiate into distinct cell types, and exert positive functional effects in experimental animal models, but little attention has been given to developing cells under conditions of good manufacturing practice (GMP) that can be scaled up for mass treatment. The capacity for continued division of stem cells in culture offers the opportunity to expand their production to meet the widespread clinical demands posed by neurodegenerative diseases. However, maintaining stem cell division in culture long term, while ensuring differentiation after transplantation, requires genetic and/or oncogenetic manipulations, which may affect the genetic stability and in vivo survival of cells. This review outlines the stages, selection criteria, problems, and ultimately the successes arising in the development of conditionally immortal clinical grade stem cell lines, which divide in vitro, differentiate in vivo, and exert positive functional effects. These processes are specifically exemplified by the murine MHP36 cell line, conditionally immortalized by a temperature-sensitive mutant of the SV40 large T antigen, and cell lines transfected with the c-myc protein fused with a mutated estrogen receptor (c-mycERTAM), regulated by a tamoxifen metabolite, but the issues raised are common to all routes for the development of effective clinical grade cells.


Cell Transplantation | 2013

In Vivo and In Vitro Characterization of the Angiogenic Effect of CTX0E03 Human Neural Stem Cells

Caroline Hicks; Lara Stevanato; Robert P. Stroemer; Ellen Tang; Sheila Richardson; John Sinden

CTX0E03 is a human neural stem cell line previously reported to reduce sensory motor deficits in a middle cerebral artery occlusion (MCAo) model of stroke. The objective of this study was to investigate if CTX0E03 treatment promotes angiogenesis. As stroke leads to damage of the vasculature in the brain, angiogenesis may contribute to the functional recovery. To test this hypothesis, the angiogenic activity of CTX0E03 was assessed both in vitro and in vivo. In vitro, CTX0E03 expression of trophic and proangiogenic factors was determined by real-time RT-PCR, Western blot, and ELISA, and its angiogenic activity was investigated in well-established angiogenesis assays. In vivo, angiogenesis was investigated in naive mice and MCAo rat brain and was evaluated by immunohistochemistry (IHC) using Von Willebrand factor (VWF), a marker of blood vessel formation, and BrdU/CD31 double labeling in naive mice only. In vitro results showed that CTX0E03-conditioned medium and coculture significantly increased total tubule formation compared with controls (p = 0.002 and p = 0.0008, respectively). Furthermore, CTX0E03 cells were found to be in direct association with the tubules by ICC. In vivo CTX0E03-treated brains demonstrated a significant increase in areas occupied by VWF-positive microvessels compared with vehicle-treated naive mice (two-way ANOVA, Interaction p < 0.05, Treatment p < 0.0001, Time p < 0.0) and MCAo rat (p = 0.001 unpaired t test, Welchs correction). CTX0E03-treated naive mouse brains showed an increase in BrdU/CD31 colabeling. In conclusion, in vitro CTX0E03 cells express proangiogenic factors and may promote angiogenesis by both release of paracrine factors and direct physical interaction. Furthermore, in vivo CTX0E03-treated rodent brains exhibited a significant increase in microvessels at the site of implantation compared with vehicle-injected groups. Taken together these data suggest that CTX0E03 cell therapy may provide significant benefit to stroke patients through upregulation of angiogenesis in the ischemic brain.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Clinical-Grade Human Neural Stem Cells Promote Reparative Neovascularization in Mouse Models of Hindlimb Ischemia

Rajesh Katare; Paul Stroemer; Caroline Hicks; Lara Stevanato; Sara Patel; Randolph Corteling; Erik Miljan; Indira Vishnubhatla; John Sinden; Paolo Madeddu

Objective—CTX0E03 (CTX) is a clinical-grade human neural stem cell (hNSC) line that promotes angiogenesis and neurogenesis in a preclinical model of stroke and is now under clinical development for stroke disability. We evaluated the therapeutic activity of intramuscular CTX hNSC implantation in murine models of hindlimb ischemia for potential translation to clinical studies in critical limb ischemia. Approach and Results—Immunodeficient (CD-1 Foxnu/nu) mice acutely treated with hNSCs had overall significantly increased rates and magnitude of recovery of surface blood flow (laser Doppler), limb muscle perfusion (fluorescent microspheres, P<0.001), and capillary and small arteriole densities in the ischemic limb (fluorescence immunohistochemistry, both P<0.001) when compared with the vehicle-treated group. Hemodynamic and anatomic improvements were dose related and optimal at a minimum dose of 3×105 cells. Dose-dependent improvements in blood flow and increased vessel densities by hNSC administration early after ischemia were confirmed in immunocompetent CD-1 and streptozotocin-induced diabetic mice, together with marked reductions in the incidence of necrotic toes (P<0.05). Delayed administration of hNSCs, 7 days after occlusion, produced restorative effects when comparable with acute treatment of 35 days after hindlimb ischemia. Histological studies in hindlimb ischemia immunocompetent mice for the first 7 days after treatment revealed short-term hNSC survival, transient elevation of early host muscle inflammatory, and angiogenic responses and acceleration of myogenesis. Conclusions—hNSC therapy represents a promising treatment option for critical limb ischemia.


BMC Neuroscience | 2009

c-MycERTAM transgene silencing in a genetically modified human neural stem cell line implanted into MCAo rodent brain

Lara Stevanato; Randolph Corteling; Paul Stroemer; Andrew Hope; Julie Heward; Erik Miljan; John Sinden

BackgroundThe human neural stem cell line CTX0E03 was developed for the cell based treatment of chronic stroke disability. Derived from fetal cortical brain tissue, CTX0E03 is a clonal cell line that contains a single copy of the c-mycERTAM transgene delivered by retroviral infection. Under the conditional regulation by 4-hydroxytamoxifen (4-OHT), c-mycERTAM enabled large-scale stable banking of the CTX0E03 cells. In this study, we investigated the fate of this transgene following growth arrest (EGF, bFGF and 4-OHT withdrawal) in vitro and following intracerebral implantation into a mid-cerebral artery occluded (MCAo) rat brain. In vitro, 4-weeks after removing growth factors and 4-OHT from the culture medium, c-mycERTAM transgene transcription is reduced by ~75%. Furthermore, immunocytochemistry and western blotting demonstrated a concurrent decrease in the c-MycERTAM protein. To examine the transcription of the transgene in vivo, CTX0E03 cells (450,000) were implanted 4-weeks post MCAo lesion and analysed for human cell survival and c-mycERTAM transcription by qPCR and qRT-PCR, respectively.ResultsThe results show that CTX0E03 cells were present in all grafted animal brains ranging from 6.3% to 39.8% of the total cells injected. Prior to implantation, the CTX0E03 cell suspension contained 215.7 (SEM = 13.2) copies of the c-mycERTAM transcript per cell. After implantation the c-mycERTAM transcript copy number per CTX0E03 cell had reduced to 6.9 (SEM = 3.4) at 1-week and 7.7 (SEM = 2.5) at 4-weeks. Bisulfite genomic DNA sequencing of the in vivo samples confirmed c-mycERTAM silencing occurred through methylation of the transgene promoter sequence.ConclusionIn conclusion the results confirm that CTX0E03 cells downregulated c-mycERTAM transgene expression both in vitro following EGF, bFGF and 4-OHT withdrawal and in vivo following implantation in MCAo rat brain. The silencing of the c-mycERTAM transgene in vivo provides an additional safety feature of CTX0E03 cells for potential clinical application.


PLOS ONE | 2016

Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes

Lara Stevanato; Lavaniya Thanabalasundaram; Nickolai Vysokov; John Sinden

Exosomes are small (30–100 nm) membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs) are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs). Our investigated hNSC line is a clonal, conditionally immortalized cell line, compliant with good manufacturing practice (GMP), and in clinical trials for stroke and critical limb ischemia in the UK (clinicaltrials.gov: NCT01151124, NCT02117635, and NCT01916369). By using next generation sequencing (NGS) technology we identified the presence of a variety of miRNAs in both exosomal and cellular preparations. Many of these miRNAs were enriched in exosomes indicating that cells specifically sort them for extracellular release. Although exosomes have been proven to contain miRNAs, the copy number quantification per exosome of a given miRNA remains unclear. Herein we quantified by real-time PCR a highly shuttled exosomal miRNA subtype (hsa-miR-1246) in order to assess its stoichiometry per exosome. Furthermore, we utilized an in vitro system to confirm its functional transfer by measuring the reduction in luciferase expression using a 3’ untranslated region dual luciferase reporter assay. In summary, NGS analysis allowed the identification of a unique set of hNSC derived exosomal miRNAs. Stoichiometry and functional transfer analysis of one of the most abundant identified miRNA, hsa-miR-1246, were measured to support biological relevance of exosomal miRNA delivery.


Stem Cell Research & Therapy | 2014

The effects of microRNAs on human neural stem cell differentiation in two- and three-dimensional cultures

Lara Stevanato; John Sinden

IntroductionStem cells have the ability to self-renew or to differentiate into numerous cell types; however, our understanding of how to control and exploit this potential is currently limited. An emerging hypothesis is that microRNAs (miRNAs) play a central role in controlling stem cell-fate determination. Herein, we have characterized the effects of miRNAs in differentiated human neural stem cells (hNSCs) by using a cell line currently being tested in clinical trials for stroke disability (NCT01151124, Clinicaltrials.gov).MethodsHNSCs were differentiated on 2- (2D) and 3-dimensional (3D) cultures for 1 and 3 weeks. Quantification of hNSC differentiation was measured with real-time PCR and axon outgrowth. The miRNA PCR arrays were implemented to investigate differential expression profiles in differentiated hNSCs. Evaluation of miRNA effects on hNSCs was performed by using transfection of miRNA mimics, real-time PCR, Western blot, and immunocytochemistry.ResultsThe 3D substrate promoted enhanced hNSC differentiation coupled with a loss of cell proliferation. Differentiated hNSCs exhibited a similar miRNA profiling. However, in 3D samples, the degree and timing of regulation were significantly different in miRNA members of cluster mi-R17 and miR-96-182, and hsa-miR-302a. Overall, hNSC 3D cultures demonstrated differential regulation of miRNAs involved in hNSC stemness, cell proliferation, and differentiation.The miRNA mimic analysis of hsa-miR-146b-5p and hsa-miR-99a confirmed induction of lineage-committed progenitors. Downregulated miRNAs were more abundant; those most significantly downregulated were selected, and their putative target mRNAs analyzed with the aim of unraveling their functionality. In differentiated hNSCs, downregulated hsa-miR-96 correlated with SOX5 upregulation of gene and protein expression; similar results were obtained for hsa-miR-302a, hsa-miR-182, hsa-miR-7, hsa-miR-20a/b, and hsa-miR-17 and their target NR4A3. Moreover, SOX5 was identified as a direct target gene of hsa-miR-96, and NR43A, a direct target of hsa-miR-7 and hsa-mir-17 by luciferase reporter assays. Therefore, the regulatory role of these miRNAs may occur through targeting NR4A3 and SOX5, both reported as modulators of cell-cycle progression and axon length.ConclusionsThe results provide new insight into the identification of specific miRNAs implicated in hNSC differentiation. These strategies may be exploited to optimize in vitro hNSC differentiation potential for use in preclinical studies and future clinical applications.


Journal of Circulating Biomarkers | 2014

The Development of Stem Cell-derived Exosomes as a Cell-free Regenerative Medicine

Indira Vishnubhatla; Randolph Corteling; Lara Stevanato; Caroline Hicks; John Sinden

A successful strategy in regenerative medicine over the last decade has been the translation of stem cell therapy to repair diseased or damaged tissue in a wide range of indications, despite limited evidence attributing any therapeutic benefit to cell survival or differentiation. Recent findings, however, have demonstrated that the conditioned media from stem cell cultures can produce similar efficacious effects compared to those observed for cells. This has led to the stem cell paracrine hypothesis, proposing that secreted factors released from the stem cells contribute significantly to their beneficial effects. It has been well documented that stem cells have the ability to release a range of growth factors, cytokines and chemokines relevant to their function; however, these factors are released at levels too low to account for the reported therapeutic effects. Further purification of the conditioned media has since identified that not only are small molecules released by the stem cells, but so too are a large quantity of membrane-bound vesicles, including exosomes, in a functionally relevant manner. In this review, we present our current understanding and explore the evidence supporting the development of stem cell-derived exosomes as a cell-free regenerative medicine.

Collaboration


Dive into the Lara Stevanato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Young

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Anthony Vugler

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

David Carter

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge