Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larisa M. Haupt is active.

Publication


Featured researches published by Larisa M. Haupt.


Nature | 2001

Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes.

Serguei R. Romanov; B. Krystyna Kozakiewicz; Charles R. Holst; Martha R. Stampfer; Larisa M. Haupt; Thea D. Tlsty

Senescence and genomic integrity are thought to be important barriers in the development of malignant lesions. Human fibroblasts undergo a limited number of cell divisions before entering an irreversible arrest, called senescence. Here we show that human mammary epithelial cells (HMECs) do not conform to this paradigm of senescence. In contrast to fibroblasts, HMECs exhibit an initial growth phase that is followed by a transient growth plateau (termed selection or M0; refs 3,4,5), from which proliferative cells emerge to undergo further population doublings (∼20–70), before entering a second growth plateau (previously termed senescence or M1; refs 4,5,6). We find that the first growth plateau exhibits characteristics of senescence but is not an insurmountable barrier to further growth. HMECs emerge from senescence, exhibit eroding telomeric sequences and ultimately enter telomere-based crisis to generate the types of chromosomal abnormalities seen in the earliest lesions of breast cancer. Growth past senescent barriers may be a pivotal event in the earliest steps of carcinogenesis, providing many genetic changes that predicate oncogenic evolution. The differences between epithelial cells and fibroblasts provide new insights into the mechanistic basis of neoplastic transformation.


Cell Metabolism | 2015

Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA

An S. Tan; James W. Baty; Lan-Feng Dong; Ayenachew Bezawork-Geleta; Berwini Endaya; Jacob Goodwin; Martina Bajzikova; Jaromira Kovarova; Martin Peterka; Bing Yan; Elham Alizadeh Pesdar; Margarita Sobol; Anatolyj Filimonenko; Shani Stuart; Magdalena Vondrusova; Katarina Kluckova; Karishma Sachaphibulkij; Jakub Rohlena; Pavel Hozák; Jaroslav Truksa; David Eccles; Larisa M. Haupt; Lyn R. Griffiths; Jiri Neuzil; Michael V. Berridge

We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.


Journal of Cellular Biochemistry | 2009

The osteogenic transcription factor Runx2 regulates components of the fibroblast growth factor/proteoglycan signaling axis in osteoblasts

Nadiya M. Teplyuk; Larisa M. Haupt; Ling Ling; Christian Dombrowski; Foong Kin Mun; Saminathan Suresh Nathan; Jane B. Lian; Janet L. Stein; Gary S. Stein; Simon M. Cool; Andre J. Van Wijnen

Heparan sulfate proteoglycans cooperate with basic fibroblast growth factor (bFGF/FGF2) signaling to control osteoblast growth and differentiation, as well as metabolic functions of osteoblasts. FGF2 signaling modulates the expression and activity of Runt‐related transcription factor 2 (Runx2/Cbfa1), a key regulator of osteoblast proliferation and maturation. Here, we have characterized novel Runx2 target genes in osteoprogenitors under conditions that promote growth arrest while not yet permitting sustained phenotypic maturation. Runx2 enhances expression of genes related to proteoglycan‐mediated signaling, including FGF receptors (e.g., FGFR2 and FGFR3) and proteoglycans (e.g., syndecans [Sdc1, Sdc2, Sdc3], glypicans [Gpc1], versican [Vcan]). Runx2 increases expression of the glycosyltransferase Exostosin‐1 (Ext1) and heparanase, as well as alters the relative expression of N‐linked sulfotransferases (Ndst1 = Ndst2 > Ndst3) and enzymes mediating O‐linked sulfation of heparan sulfate (Hs2st > Hs6st) or chondroitin sulfate (Cs4st > Cs6st). Runx2 cooperates with FGF2 to induce expression of Sdc4 and the sulfatase Galns, but Runx2 and FGF2 suppress Gpc6, thus suggesting intricate Runx2 and FGF2 dependent changes in proteoglycan utilization. One functional consequence of Runx2 mediated modulations in proteoglycan‐related gene expression is a change in the responsiveness of bone markers to FGF2 stimulation. Runx2 and FGF2 synergistically enhance osteopontin expression (>100 fold), while FGF2 blocks Runx2 induction of alkaline phosphatase. Our data suggest that Runx2 and the FGF/proteoglycan axis may form an extracellular matrix (ECM)‐related regulatory feed‐back loop that controls osteoblast proliferation and execution of the osteogenic program. J. Cell. Biochem. 107: 144–154, 2009.


Diabetes and Vascular Disease Research | 2006

TNF and TNF receptor expression and insulin sensitivity in human omental and subcutaneous adipose tissue - influence of BMI and adipose distribution

Manuela Good; Felicity Newell; Larisa M. Haupt; Jonathan P. Whitehead; Louise J. Hutley; Johannes B. Prins

Tumour necrosis factor (TNF)α is implicated in the relationship between obesity and insulin resistance/type 2 diabetes. In an effort to understand this association better we (i) profiled gene expression patterns of TNF, TNFR1 and TNFR2 and (ii) investigated the effects of TNF on glucose uptake in isolated adipocytes and adipose tissue explants from omental and subcutaneous depots from lean, overweight and obese individuals. TNF expression correlated with expression of TNFR2, but not TNFR1, and TNF and TNFR2 expression increased in obesity. TNFR1 expression was higher in omental than in subcutaneous adipocytes. Expression levels of TNF or either receptor did not differ between adipocytes from individuals with central and peripheral obesity. TNF only suppressed glucose uptake in insulin-stimulated subcutaneous tissue and this suppression was only observed in tissue from lean subjects. These data support a relationship between the TNF system and body mass index (BMI), but not fat distribution, and suggest depot specificity of the TNF effect on glucose uptake. Furthermore, adipose tissue from obese subjects already appears insulin ‘resistant’ and this may be a result of the increased TNF levels.


Journal of Cellular Physiology | 2009

The heparan sulfate proteoglycan (HSPG) glypican-3 mediates commitment of MC3T3-E1 cells toward osteogenesis.

Larisa M. Haupt; Sadasivam Murali; Foong Kin Mun; Nadiya M. Teplyuk; Leong Fong Mei; Gary S. Stein; Andre J. Van Wijnen; Victor Nurcombe; Simon M. Cool

Heparan sulfate (HS) sugar chains attached to core proteoglycans (PGs) termed HSPGs mediate an extensive range of cell–extracellular matrix (ECM) and growth factor interactions based upon their sulfation patterns. When compared with non‐osteogenic (maintenance media) culture conditions, under established osteogenic culture conditions, MC3T3‐E1 cells characteristically increase their osteogenic gene expression profile and switch their dominant fibroblast growth factor receptor (FGFR) from FGFR1 (0.5‐fold decrease) to FGFR3 (1.5‐fold increase). The change in FGFR expression profile of the osteogenic‐committed cultures was reflected by their inability to sustain an FGF‐2 stimulus, but respond to BMP‐2 at day 14 of culture. The osteogenic cultures decreased their chondroitin and dermatan sulfate PGs (biglycan, decorin, and versican), but increased levels of the HS core protein gene expression, in particular glypican‐3. Commitment and progress through osteogenesis is accompanied by changes in FGFR expression, decreased GAG initiation but increased N‐ and O‐sulfation and reduced remodeling of the ECM (decreased heparanase expression) resulting in the production of homogenous (21 kDa) HS chain. With the HSPG glypican‐3 expression strongly upregulated in these processes, siRNA was used to knockdown this gene to examine the effect on osteogenic commitment. Reduced glypican‐3 abrogated the expression of Runx2, and thus differentiation. The reintroduction of this HSPG into Runx2‐null cells allowed osteogenesis to proceed. These results demonstrate the dependence of osteogenesis on specific HS chains, in particular those associated with glypican‐3. J. Cell. Physiol. 220: 780–791, 2009.


Journal of Biological Chemistry | 2010

Synergism between Wnt3a and Heparin Enhances Osteogenesis via a Phosphoinositide 3-Kinase/Akt/RUNX2 Pathway

Ling Ling; Christian Dombrowski; Kin Mun Foong; Larisa M. Haupt; Gary S. Stein; Victor Nurcombe; Andre J. Van Wijnen; Simon M. Cool

A new strategy has emerged to improve healing of bone defects using exogenous glycosaminoglycans by increasing the effectiveness of bone-anabolic growth factors. Wnt ligands play an important role in bone formation. However, their functional interactions with heparan sulfate/heparin have only been investigated in non-osseous tissues. Our study now shows that the osteogenic activity of Wnt3a is cooperatively stimulated through physical interactions with exogenous heparin. N-Sulfation and to a lesser extent O-sulfation of heparin contribute to the physical binding and optimal co-stimulation of Wnt3a. Wnt3a-heparin signaling synergistically increases osteoblast differentiation with minimal effects on cell proliferation. Thus, heparin selectively reduces the effective dose of Wnt3a needed to elicit osteogenic, but not mitogenic responses. Mechanistically, Wnt3a-heparin signaling strongly activates the phosphoinositide 3-kinase/Akt pathway and requires the bone-related transcription factor RUNX2 to stimulate alkaline phosphatase activity, which parallels canonical β-catenin signaling. Collectively, our findings establish the osteo-inductive potential of a heparin-mediated Wnt3a-phosphoinositide 3-kinase/Akt-RUNX2 signaling network and suggest that heparan sulfate supplementation may selectively reduce the therapeutic doses of peptide factors required to promote bone formation.


Current Genomics | 2013

Review: Alternative Splicing (AS) of Genes As An Approach for Generating Protein Complexity

Bishakha Roy; Larisa M. Haupt; Lyn R. Griffiths

Prior to the completion of the human genome project, the human genome was thought to have a greater number of genes as it seemed structurally and functionally more complex than other simpler organisms. This along with the belief of “one gene, one protein”, were demonstrated to be incorrect. The inequality in the ratio of gene to protein formation gave rise to the theory of alternative splicing (AS). AS is a mechanism by which one gene gives rise to multiple protein products. Numerous databases and online bioinformatic tools are available for the detection and analysis of AS. Bioinformatics provides an important approach to study mRNA and protein diversity by various tools such as expressed sequence tag (EST) sequences obtained from completely processed mRNA. Microarrays and deep sequencing approaches also aid in the detection of splicing events. Initially it was postulated that AS occurred only in about 5% of all genes but was later found to be more abundant. Using bioinformatic approaches, the level of AS in human genes was found to be fairly high with 35-59% of genes having at least one AS form. Our ability to determine and predict AS is important as disorders in splicing patterns may lead to abnormal splice variants resulting in genetic diseases. In addition, the diversity of proteins produced by AS poses a challenge for successful drug discovery and therefore a greater understanding of AS would be beneficial.


BMC Research Notes | 2010

Analysis of the MTHFR C677T variant with migraine phenotypes

Annie Liu; Saras Menon; Natalie Jane Colson; Sharon Anne Quinlan; Hannah Cox; Madelyn Peterson; Thomas Tiang; Larisa M. Haupt; Rodney Arthur Lea; Lyn R. Griffiths

BackgroundThe methylenetetrahydrofolate reductase (MTHFR) gene variant C677T has been implicated as a genetic risk factor in migraine susceptibility, particularly in Migraine with Aura. Migraine, with and without aura (MA and MO) have many diagnostic characteristics in common. It is postulated that migraine symptomatic characteristics might themselves be influenced by MTHFR. Here we analysed the clinical profile, migraine symptoms, triggers and treatments of 267 migraineurs previously genotyped for the MTHFR C677T variant. The chi-square test was used to analyse all potential relationships between genotype and migraine clinical variables. Regression analyses were performed to assess the association of C677T with all migraine clinical variables after adjusting for gender.FindingsThe homozygous TT genotype was significantly associated with MA (P < 0.0001) and unilateral head pain (P = 0.002). While the CT genotype was significantly associated with physical activity discomfort (P < 0.001) and stress as a migraine trigger (P = 0.002). Females with the TT genotype were significantly associated with unilateral head pain (P < 0.001) and females with the CT genotype were significantly associated with nausea (P < 0.001), osmophobia (P = 0.002), and the use of natural remedy for migraine treatment (P = 0.003). Conversely, male migraineurs with the TT genotype experienced higher incidences of bilateral head pain (63% vs 34%) and were less likely to use a natural remedy as a migraine treatment compared to female migraineurs (5% vs 20%).ConclusionsMTHFR genotype is associated with specific clinical variables of migraine including unilateral head pain, physical activity discomfort and stress.


Developmental Biology | 2014

Mesenchymal stem cells, neural lineage potential, heparan sulfate proteoglycans and the matrix

Rachel K. Okolicsanyi; Lyn R. Griffiths; Larisa M. Haupt

Along with the tri-lineage of bone, cartilage and fat, human mesenchymal stem cells (hMSCs) retain neural lineage potential. Multiple factors have been described that influence lineage fate of hMSCs including the extracellular microenvironment or niche. The niche includes the extracellular matrix (ECM) providing structural composition, as well as other associated proteins and growth factors, which collectively influence hMSC stemness and lineage specification. As such, lineage specific differentiation of MSCs is mediated through interactions including cell-cell and cell-matrix, as well as through specific signalling pathways triggering downstream events. Proteoglycans (PGs) are ubiquitous within this microenvironment and can be localised to the cell surface or embedded within the ECM. In addition, the heparan sulfate (HS) and chondroitin sulfate (CS) families of PGs interact directly with a number of growth factors, signalling pathways and ECM components including FGFs, Wnts and fibronectin. With evidence supporting a role for HSPGs and CSPGs in the specification of hMSCs down the osteogenic, chondrogenic and adipogenic lineages, along with the localisation of PGs in development and regeneration, it is conceivable that these important proteins may also play a role in the differentiation of hMSCs toward the neuronal lineage. Here we summarise the current literature and highlight the potential for HSPG directed neural lineage fate specification in hMSCs, which may provide a new model for brain damage repair.


Molecular Biology Reports | 2012

Induction of antioxidative Nrf2 gene transcription by coffee in humans: depending on genotype?

Ute Boettler; Nadine Volz; Nicole Teller; Larisa M. Haupt; Tamara Bakuradze; Gerhard Eisenbrand; Gerhard Bytof; Ingo Lantz; Lyn R. Griffiths; Doris Marko

The Nrf2/ARE pathway is a major cellular defense mechanism that prevents damage by reactive oxygen species through induction of antioxidative phase II enzymes. However, the activity of the Nrf2/ARE system is not uniform with variability in response presumed to be dependent on the Nrf2 genotype. We recently completed a pilot human coffee intervention trial with healthy humans, where large interindividual differences in the antioxidative response to the study coffee were examined. Here, we address the question whether differences in the modulation of Nrf2 gene transcription, assessed as an induction of Nrf2 gene transcription by Q-PCR, might be correlated with specific Nrf2 genotypes. To date, nine single nucleotide polymorphisms (SNPs) have been identified in the Nrf2 (NFE2L2) gene. Two of these, the −617C/A and −651G/A SNPs are located within the promoter region and have previously been reported to influence the activity of the Nrf2/ARE pathway by reducing Nrf2 transcriptional activity. Sequencing of the critical Nrf2 gene promoter region not only confirmed the existence of these SNPs within the participants of the trial at the expected frequency (33% carrying the −617C/A, 17% the −651G/A and 56% the −653A/G SNP) but also indicated reduced Nrf2 gene transcription associated with a normal diet if the SNPs at position −617, −651 or −653 were present. Of note, the data also indicated the study coffee increased Nrf2 gene transcription even in SNP carriers. This further highlights the relevance of genotype-dependent induction of Nrf2 gene transcription that appears to be largely influenced by dietary factors.

Collaboration


Dive into the Larisa M. Haupt's collaboration.

Top Co-Authors

Avatar

Lyn R. Griffiths

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Heidi G. Sutherland

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rod A. Lea

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Smith

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel K. Okolicsanyi

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge