Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larisa M. Ryzhova is active.

Publication


Featured researches published by Larisa M. Ryzhova.


Journal of Clinical Investigation | 2012

Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease

Britta George; Rakesh Verma; Abdulsalam Soofi; Puneet Garg; Jidong Zhang; Tae-Ju Park; Laura Giardino; Larisa M. Ryzhova; Duncan B. Johnstone; Hetty N. Wong; Deepak Nihalani; David J. Salant; Steven K. Hanks; Tom Curran; Maria Pia Rastaldi; Lawrence B. Holzman

The morphology of healthy podocyte foot processes is necessary for maintaining the characteristics of the kidney filtration barrier. In most forms of glomerular disease, abnormal filter barrier function results when podocytes undergo foot process spreading and retraction by remodeling their cytoskeletal architecture and intercellular junctions during a process known as effacement. The cell adhesion protein nephrin is necessary for establishing the morphology of the kidney podocyte in development by transducing from the specialized podocyte intercellular junction phosphorylation-mediated signals that regulate cytoskeletal dynamics. The present studies extend our understanding of nephrin function by showing that nephrin activation in cultured podocytes induced actin dynamics necessary for lamellipodial protrusion. This process required a PI3K-, Cas-, and Crk1/2-dependent signaling mechanism distinct from the previously described nephrin-Nck1/2 pathway necessary for assembly and polymerization of actin filaments. Our present findings also support the hypothesis that mechanisms governing lamellipodial protrusion in culture are similar to those used in vivo during foot process effacement in a subset of glomerular diseases. In mice, podocyte-specific deletion of Crk1/2 prevented foot process effacement in one model of podocyte injury and attenuated foot process effacement and associated proteinuria in a delayed fashion in a second model. In humans, focal adhesion kinase and Cas phosphorylation - markers of focal adhesion complex-mediated Crk-dependent signaling - was induced in minimal change disease and membranous nephropathy, but not focal segmental glomerulosclerosis. Together, these observations suggest that activation of a Cas-Crk1/2-dependent complex is necessary for foot process effacement observed in distinct subsets of human glomerular diseases.


Journal of Molecular and Cellular Cardiology | 2012

5-HT2B antagonism arrests non-canonical TGF-β1-induced valvular myofibroblast differentiation

Joshua D. Hutcheson; Larisa M. Ryzhova; Vincent Setola; W. David Merryman

Transforming growth factor-β1 (TGF-β1) induces myofibroblast activation of quiescent aortic valve interstitial cells (AVICs), a differentiation process implicated in calcific aortic valve disease (CAVD). The ubiquity of TGF-β1 signaling makes it difficult to target in a tissue specific manner; however, the serotonin 2B receptor (5-HT(2B)) is highly localized to cardiopulmonary tissues and agonism of this receptor displays pro-fibrotic effects in a TGF-β1-dependent manner. Therefore, we hypothesized that antagonism of 5-HT(2B) opposes TGF-β1-induced pathologic differentiation of AVICs and may offer a druggable target to prevent CAVD. To test this hypothesis, we assessed the interaction of 5-HT(2B) antagonism with canonical and non-canonical TGF-β1 pathways to inhibit TGF-β1-induced activation of isolated porcine AVICs in vitro. Here we show that AVIC activation and subsequent calcific nodule formation is completely mitigated by 5-HT(2B) antagonism. Interestingly, 5-HT(2B) antagonism does not inhibit canonical TGF-β1 signaling as identified by Smad3 phosphorylation and activation of a partial plasminogen activator inhibitor-1 promoter (PAI-1, a transcriptional target of Smad3), but prevents non-canonical p38 MAPK phosphorylation. It was initially suspected that 5-HT(2B) antagonism prevents Src tyrosine kinase phosphorylation; however, we found that this is not the case and time-lapse microscopy indicates that 5-HT(2B) antagonism prevents non-canonical TGF-β1 signaling by physically arresting Src tyrosine kinase. This study demonstrates the necessity of non-canonical TGF-β1 signaling in leading to pathologic AVIC differentiation. Moreover, we believe that the results of this study suggest 5-HT(2B) antagonism as a novel therapeutic approach for CAVD that merits further investigation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Cadherin-11 Regulates Cell–Cell Tension Necessary for Calcific Nodule Formation by Valvular Myofibroblasts

Joshua D. Hutcheson; Joseph Chen; M. K. Sewell-Loftin; Larisa M. Ryzhova; Charles I. Fisher; Yan Ru Su; W. David Merryman

Objective—Dystrophic calcific nodule formation in vitro involves differentiation of aortic valve interstitial cells (AVICs) into a myofibroblast phenotype. Interestingly, inhibition of the kinase MAPK Erk kinase (MEK)1/2 prevents calcific nodule formation despite leading to myofibroblast activation of AVICs, indicating the presence of an additional mechanotransductive component required for calcific nodule morphogenesis. In this study, we assess the role of transforming growth factor &bgr;1–induced cadherin-11 expression in calcific nodule formation. Methods and Results—As shown previously, porcine AVICs treated with transforming growth factor &bgr;1 before cyclic strain exhibit increased myofibroblast activation and significant calcific nodule formation. In addition to an increase in contractile myofibroblast markers, transforming growth factor &bgr;1–treated AVICs exhibit significantly increased expression of cadherin-11. This expression is inhibited by the addition of U0126, a specific MEK1/2 inhibitor. The role of increased cadherin-11 is revealed through a wound assay, which demonstrates increased intercellular tension in transforming growth factor &bgr;1–treated AVICs possessing cadherin-11. Furthermore, when small interfering RNA is used to knockdown cadherin-11, calcific nodule formation is abrogated, indicating that robust cell–cell connections are necessary in generating tension for calcific nodule morphogenesis. Finally, we demonstrate enrichment of cadherin-11 in human calcified leaflets. Conclusion—These results indicate the necessity of cadherin-11 for dystrophic calcific nodule formation, which proceeds through an Erk1/2-dependent pathway.


Journal of Biological Chemistry | 2010

Dynamics and Mechanism of p130Cas Localization to Focal Adhesions

Dominique M. Donato; Larisa M. Ryzhova; Leslie M. Meenderink; Irina Kaverina; Steven K. Hanks

The docking protein p130Cas is a major Src substrate involved in integrin signaling and mechanotransduction. Tyrosine phosphorylation of p130Cas in focal adhesions (FAs) has been linked to enhanced cell migration, invasion, proliferation, and survival. However, the mechanism of p130Cas targeting to FAs is uncertain, and dynamic aspects of its localization have not been explored. Using live cell microscopy, we show that fluorophore-tagged p130Cas is a component of FAs throughout the FA assembly and disassembly stages, although it resides transiently in FAs with a high mobile fraction. Deletion of either the N-terminal Src homology 3 (SH3) domain or the Cas-family C-terminal homology (CCH) domain significantly impaired p130Cas FA localization, and deletion of both domains resulted in full exclusion. Focal adhesion kinase was implicated in the FA targeting function of the p130Cas SH3 domain. Consistent with their roles in FA targeting, both the SH3 and CCH domains were found necessary for p130Cas to fully undergo tyrosine phosphorylation and promote cell migration. By revealing the capacity of p130Cas to function in FAs throughout their lifetime, clarifying FA targeting mechanism, and demonstrating the functional importance of the highly conserved CCH domain, our results advance the understanding of an important aspect of integrin signaling.


PLOS ONE | 2010

P130Cas Src-Binding and Substrate Domains Have Distinct Roles in Sustaining Focal Adhesion Disassembly and Promoting Cell Migration

Leslie M. Meenderink; Larisa M. Ryzhova; Dominique M. Donato; Daniel F. Gochberg; Irina Kaverina; Steven K. Hanks

The docking protein p130Cas is a prominent Src substrate found in focal adhesions (FAs) and is implicated in regulating critical aspects of cell motility including FA disassembly and protrusion of the leading edge plasma membrane. To better understand how p130Cas acts to promote these events we examined requirements for established p130Cas signaling motifs including the SH3-binding site of the Src binding domain (SBD) and the tyrosine phosphorylation sites within the substrate domain (SD). Expression of wild type p130Cas in Cas −/− mouse embryo fibroblasts resulted in enhanced cell migration associated with increased leading-edge actin flux, increased rates of FA assembly/disassembly, and uninterrupted FA turnover. Variants lacking either the SD phosphorylation sites or the SBD SH3-binding motif were able to partially restore the migration response, while only a variant lacking both signaling functions was fully defective. Notably, the migration defects associated with p130Cas signaling-deficient variants correlated with longer FA lifetimes resulting from aborted FA disassembly attempts. However the SD mutational variant was fully defective in increasing actin assembly at the protruding leading edge and FA assembly/disassembly rates, indicating that SD phosphorylation is the sole p130Cas signaling function in regulating these processes. Our results provide the first quantitative evidence supporting roles for p130Cas SD tyrosine phosphorylation in promoting both leading edge actin flux and FA turnover during cell migration, while further revealing that the p130Cas SBD has a function in cell migration and sustained FA disassembly that is distinct from its known role of promoting SD tyrosine phosphorylation.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Notch1 Mutation Leads to Valvular Calcification Through Enhanced Myofibroblast Mechanotransduction

Joseph Chen; Larisa M. Ryzhova; M. K. Sewell-Loftin; Christopher B. Brown; Stacey S. Huppert; H. Scott Baldwin; W. David Merryman

Objective— Calcific aortic valve disease (CAVD) is a significant cardiovascular disorder, and controversy exists as to whether it is primarily a dystrophic or osteogenic process in vivo. In this study, we sought to clarify the mechanism of CAVD by assessing a genetic mutation, Notch1 heterozygosity, which leads to CAVD with 100% penetrance in humans. Approach and Results— Murine immortalized Notch1+/− aortic valve interstitial cells (AVICs) were isolated and expanded in vitro. Molecular signaling of wild-type and Notch1+/− AVICs were compared to identify changes in pathways that have been linked to CAVD—transforming growth factor-&bgr;1/bone morphogenetic protein, mitogen-activated protein kinase, and phosphoinositide 3-kinase/protein kinase B—and assessed for calcification potential. Additionally, AVIC mechanobiology was studied in a physiologically relevant, dynamic mechanical environment (10% cyclic strain) to investigate differences in responses between the cell types. We found that Notch1+/− AVICs resembled a myofibroblast-like phenotype expressing higher amounts of cadherin-11, a known mediator of dystrophic calcification, and decreased Runx2, a known osteogenic marker. We determined that cadherin-11 expression is regulated by Akt activity, and inhibition of Akt phosphorylation significantly reduced cadherin-11 expression. Moreover, in the presence of cyclic strain, Notch1+/− AVICs exhibited significantly upregulated phosphorylation of Akt at Ser473 and smooth muscle &agr;-actin expression, indicative of a fully activated myofibroblast. Finally, these Notch1-mediated alterations led to enhanced dystrophic calcific nodule formation. Conclusions— This study presents novel insights in our understanding of Notch1-mediated CAVD by demonstrating that the mutation leads to AVICs that are fully activated myofibroblasts, resulting in dystrophic, but not osteogenic, calcification.


PLOS ONE | 2016

Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension

James West; Erica J. Carrier; Nathaniel C. Bloodworth; Alison K. Schroer; Peter Chen; Larisa M. Ryzhova; Santhi Gladson; Sheila Shay; Joshua D. Hutcheson; W. David Merryman

Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice.


Journal of Cell Science | 2017

ARHGAP42 is activated by Src-mediated tyrosine phosphorylation to promote cell motility

Weifeng Luo; Radoslav Janoštiak; Ondřej Tolde; Larisa M. Ryzhova; Lenka Koudelková; Michal Dibus; Jan Brábek; Steven K. Hanks; Daniel Rösel

ABSTRACT The tyrosine kinase Src acts as a key regulator of cell motility by phosphorylating multiple protein substrates that control cytoskeletal and adhesion dynamics. In an earlier phosphotyrosine proteomics study, we identified a novel Rho-GTPase activating protein, now known as ARHGAP42, as a likely biologically relevant Src substrate. ARHGAP42 is a member of a family of RhoGAPs distinguished by tandem BAR-PH domains lying N-terminal to the GAP domain. Like other family members, ARHGAP42 acts preferentially as a GAP for RhoA. We show that Src principally phosphorylates ARHGAP42 on tyrosine 376 (Tyr-376) in the short linker between the BAR-PH and GAP domains. The expression of ARHGAP42 variants in mammalian cells was used to elucidate its regulation. We found that the BAR domain is inhibitory toward the GAP activity of ARHGAP42, such that BAR domain deletion resulted in decreased active GTP-bound RhoA and increased cell motility. With the BAR domain intact, ARHGAP42 GAP activity could be activated by phosphorylation of Tyr-376 to promote motile cell behavior. Thus, phosphorylation of ARHGAP42 Tyr-376 is revealed as a novel regulatory event by which Src can affect actin dynamics through RhoA inhibition. Summary: ARHGAP42 is activated by Src-mediated Tyr-376 phosphorylation to inhibit RhoA, and promote focal adhesion dynamics and cell motility.


American Journal of Physiology-heart and Circulatory Physiology | 2018

Cadherin-11 as a regulator of valve myofibroblast mechanobiology

Meghan A. Bowler; Matthew R. Bersi; Larisa M. Ryzhova; Rachel J. Jerrell; Aron Parekh; W. David Merryman

Cadherin-11 (CDH11) is upregulated in a variety of fibrotic diseases, including arthritis and calcific aortic valve disease. Our recent work has identified CDH11 as a potential therapeutic target and shown that treatment with a CDH11 functional blocking antibody can prevent hallmarks of calcific aortic valve disease in mice. The present study investigated the role of CDH11 in regulating the mechanobiological behavior of valvular interstitial cells believed to cause calcification. Aortic valve interstitial cells were harvested from Cdh11+/+, Cdh11+/-, and Cdh11-/- immortomice. Cells were subjected to inflammatory cytokines transforming growth factor (TGF)-β1 and IL-6 to characterize the molecular mechanisms by which CDH11 regulates their mechanobiological changes. Histology was performed on aortic valves from Cdh11+/+, Cdh11+/-, and Cdh11-/- mice to identify key responses to CDH11 deletion in vivo. We showed that CDH11 influences cell behavior through its regulation of contractility and its ability to bind substrates via focal adhesions. We also show that transforming growth factor-β1 overrides the normal relationship between CDH11 and smooth muscle α-actin to exacerbate the myofibroblast disease phenotype. This phenotypic switch is potentiated through the IL-6 signaling axis and could act as a paracrine mechanism of myofibroblast activation in neighboring aortic valve interstitial cells in a positive feedback loop. These data suggest CDH11 is an important mediator of the myofibroblast phenotype and identify several mechanisms by which it modulates cell behavior. NEW & NOTEWORTHY Cadherin-11 influences valvular interstitial cell contractility by regulating focal adhesions and inflammatory cytokine secretion. Transforming growth factor-β1 overrides the normal balance between cadherin-11 and smooth muscle α-actin expression to promote a myofibroblast phenotype. Cadherin-11 is necessary for IL-6 and chitinase-3-like protein 1 secretion, and IL-6 promotes contractility. Targeting cadherin-11 could therapeutically influence valvular interstitial cell phenotypes in a multifaceted manner.


ASME 2012 Summer Bioengineering Conference, Parts A and B | 2012

5-HT2B Antagonism Inhibits Strain- and Cytokine-Dependent Formation of Calcific Nodules by Aortic Valve Interstitial Cells

Joshua D. Hutcheson; Joseph Chen; Larisa M. Ryzhova; W. David Merryman

The progression of aortic valve (AV) disease is often characterized by the formation of calcific nodules on thickened AV leaflets, limiting the biomechanical function of the valve. In these cases, the association of extracellular Ca2+ with phosphates remaining in cellular debris within the decellularized scaffolds has been proposed to lead to the nucleation and growth of calcific nodules. In native tissue, calcification is thought to be a more active process involving AV interstitial cells (AVICs). AVICs have been shown to form nodule-like structures in vitro through differentiation to a phenotype with osteogenic character. Additionally, in vitro nodules are characterized by activated smooth muscle α-actin (αSMA) positive AVICs and high levels of apoptosis [1–2]. Mechanical strain has also been shown to influence nodule formation in excised AV leaflets [3]. Our lab has recently developed a model system that recapitulates the formation of calcific nodules in vitro [4]. AVICs treated with TGF-β1 for 24 h prior to the addition of 15% cyclic strain in a Flexcell strain system form nodules that appear to be dependent upon the initiation of AVIC activation. These observations are consistent with previous studies that have shown that αSMA expression is required for nodule formation by AVICs in static culture, with statins shown to inhibit in vitro nodule formation [1]. However, retrospective epidemiological studies have shown that these drugs may not be as effective in preventing calcific valve disease in patients [5]. Additionally, the molecular target and relevant pathways for statins in AVICs remain largely unknown. Therefore, a therapeutically relevant target to prevent AVIC activation and subsequent nodule formation is greatly needed. In this study we investigated the ability of antagonists to 5-HT2B, a receptor known to be upstream of TGF-β1, to oppose strain- and TGF-β1-induced AVIC activation and nodule formation. We also assessed the efficacy of an antagonist to a receptor, the angiotensin II type I receptor (AT1R), known to crosstalk with both 5-HT2B and TGF-β1 signaling in other cell types in inhibiting AVIC nodule formation. Our results indicate that 5-HT2B antagonism inhibits AVIC activation and nodule formation by blocking non-canonical TGF-β1 signaling, whereas AT1R antagonism does not inhibit these outcomes. We believe that the results of this study may indicate novel therapeutic targets to prevent the progression of AV calcification.Copyright

Collaboration


Dive into the Larisa M. Ryzhova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irina Kaverina

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua D. Hutcheson

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge