Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larisa Nonn is active.

Publication


Featured researches published by Larisa Nonn.


Molecular and Cellular Biology | 2003

The Absence of Mitochondrial Thioredoxin 2 Causes Massive Apoptosis, Exencephaly, and Early Embryonic Lethality in Homozygous Mice

Larisa Nonn; Ryan Williams; Robert P. Erickson; Garth Powis

ABSTRACT Thioredoxin 2 (Trx-2) is a small redox protein containing the thioredoxin active site Trp-Cys-Gly-Pro-Cys that is localized to the mitochondria by a mitochondrial leader sequence and encoded by a nuclear gene (Trx-2). Trx-2 plays an important role in cell viability and the regulation of apoptosis in vitro. To investigate the role of Trx-2 in mouse development, we studied the phenotype of mice that have the Trx-2 gene silenced by mutational insertion. Homozygous mutant embryos do not survive to birth and die after implantation at Theiler stage 15/16. The homozygous mutant embryos display an open anterior neural tube and show massively increased apoptosis at 10.5 days postcoitus and are not present by 12.5 days postcoitus. The timing of the embryonic lethality coincides with the maturation of the mitochondria, since they begin oxidative phosphorylation during this stage of embryogenesis. In addition, embryonic fibroblasts cultured from homozygous Trx-2-null embryos were not viable. Heterozygous mice are fertile and have no discernible phenotype visible by external observation, despite having decreased Trx-2 mRNA and protein. These results show that the mitochondrial redox protein Trx-2 is required for normal development of the mouse embryo and for actively respiring cells.


Cancer Research | 2005

Regulation of Prostaglandin Metabolism by Calcitriol Attenuates Growth Stimulation in Prostate Cancer Cells

Jacqueline Moreno; Aruna V. Krishnan; Srilatha Swami; Larisa Nonn; Donna M. Peehl; David Feldman

Calcitriol exhibits antiproliferative and pro-differentiation effects in prostate cancer. Our goal is to further define the mechanisms underlying these actions. We studied established human prostate cancer cell lines and primary prostatic epithelial cells and showed that calcitriol regulated the expression of genes involved in the metabolism of prostaglandins (PGs), known stimulators of prostate cell growth. Calcitriol significantly repressed the mRNA and protein expression of prostaglandin endoperoxide synthase/cyclooxygenase-2 (COX-2), the key PG synthesis enzyme. Calcitriol also up-regulated the expression of 15-hydroxyprostaglandin dehydrogenase, the enzyme initiating PG catabolism. This dual action was associated with decreased prostaglandin E2 secretion into the conditioned media of prostate cancer cells exposed to calcitriol. Calcitriol also repressed the mRNA expression of the PG receptors EP2 and FP, providing a potential additional mechanism of suppression of the biological activity of PGs. Calcitriol treatment attenuated PG-mediated functional responses, including the stimulation of prostate cancer cell growth. The combination of calcitriol with nonsteroidal anti-inflammatory drugs (NSAIDs) synergistically acted to achieve significant prostate cancer cell growth inhibition at approximately 2 to 10 times lower concentrations of the drugs than when used alone. In conclusion, the regulation of PG metabolism and biological actions constitutes a novel pathway of calcitriol action that may contribute to its antiproliferative effects in prostate cells. We propose that a combination of calcitriol and nonselective NSAIDs might be a useful chemopreventive and/or therapeutic strategy in men with prostate cancer, as it would allow the use of lower concentrations of both drugs, thereby reducing their toxic side effects.


Cancer Research | 2006

Inhibition of p38 by Vitamin D Reduces Interleukin-6 Production in Normal Prostate Cells via Mitogen-Activated Protein Kinase Phosphatase 5: Implications for Prostate Cancer Prevention by Vitamin D

Larisa Nonn; Lihong Peng; David Feldman; Donna M. Peehl

Although numerous studies have implicated vitamin D in preventing prostate cancer, the underlying mechanism(s) remains unclear. Using normal human prostatic epithelial cells, we examined the role of mitogen-activated protein kinase phosphatase 5 (MKP5) in mediating cancer preventive activities of vitamin D. Up-regulation of MKP5 mRNA by 1,25-dihydroxyvitamin-D3 (1,25D) was dependent on the vitamin D receptor. We also identified a putative positive vitamin D response element within the MKP5 promoter that associated with the vitamin D receptor following 1,25D treatment. MKP5 dephosphorylates/inactivates the stress-activated protein kinase p38. Treatment of prostate cells with 1,25D inhibited p38 phosphorylation, and MKP5 small interfering RNA blocked this effect. Activation of p38 and downstream production of interleukin 6 (IL-6) are proinflammatory. Inflammation and IL-6 overexpression have been implicated in the initiation and progression of prostate cancer. 1,25D pretreatment inhibited both UV- and tumor necrosis factor alpha-stimulated IL-6 production in normal cells via p38 inhibition. Consistent with inhibition of p38, 1,25D decreased UV-stimulated IL-6 mRNA stabilization. The ability of 1,25D to up-regulate MKP5 was maintained in primary prostatic adenocarcinoma cells but was absent in metastases-derived prostate cancer cell lines. The inability of 1,25D to regulate MKP5 in the metastasis-derived cancer cells suggests there may be selective pressure to eliminate key tumor suppressor functions of vitamin D during cancer progression. These studies reveal MKP5 as a mediator of p38 inactivation and decreased IL-6 expression by 1,25D in primary prostatic cultures of normal and adenocarcinoma cells, implicating decreased prostatic inflammation as a potential mechanism for prostate cancer prevention by 1,25D.


The Prostate | 2009

Evidence for field cancerization of the prostate

Larisa Nonn; Vijayalakshmi Ananthanarayanan; Peter H. Gann

Field cancerization, which is not yet well‐characterized in the prostate, occurs when large areas of an organ or tissue surface are affected by a carcinogenic insult, resulting in the development of multi‐focal independent premalignant foci and molecular lesions that precede histological change.


Journal of Biological Chemistry | 2011

miR-183-96-182 Cluster Is Overexpressed in Prostate Tissue and Regulates Zinc Homeostasis in Prostate Cells

Brittany L. Mihelich; Ekaterina A. Khramtsova; Nicole Arva; Avani Vaishnav; Daniel N. Johnson; Angeline Antonio Giangreco; Elena S. Martens-Uzunova; Omar Bagasra; Andre Kajdacsy-Balla; Larisa Nonn

Background: Zinc is vital to normal prostate function and uniquely concentrates in healthy prostate. A hallmark of prostate cancers is diminished zinc levels. Results: The miR-183 family is overexpressed in prostate cancer and regulates intracellular zinc via suppression of zinc transporters. Conclusion: Prostatic zinc homeostasis is regulated by microRNAs. Significance: The miR-183 family regulates zinc and may contribute to prostate carcinogenesis. Decreased zinc levels are a hallmark of prostate cancer tumors as zinc uniquely concentrates in healthy prostate tissue. Increased dietary zinc correlates with decreased risk of advanced prostate cancer and decreased mortality from prostate cancer. The mechanisms of prostatic zinc homeostasis are not known. Lower zinc levels in the tumor are correlated directly with decreased expression of the zinc transporter hZIP1. We report identification of a microRNA cluster that regulates multiple zinc transporters, including hZIP1. Screening in laser capture microdissected prostate cancer tumors identified miR-182 as a potential regulator of hZIP1. Regulation of hZIP1 by miR-182 via two binding sites was confirmed in primary prostate cell cultures. miR-96 and miR-183 are expressed as a cluster with miR-182 and share similar sequences. Array profiling of tissue showed that miR-183, -96, and -182 are higher in prostate cancer tissue compared with normal prostate. Overexpression of the entire miR-183-96-182 cluster suppressed five additional zinc transporters. Overexpression of miR-183, -96, and -182 individually or as a cluster diminished labile zinc pools and reduced zinc uptake, demonstrating this miR cluster as a regulator of zinc homeostasis. We observed regulation of zinc homeostasis by this cluster in prostate cells and HEK-293 cells, suggesting a universal mechanism that is not prostate-specific. To our knowledge, this is the first report of a miR cluster targeting a family of metal transport proteins. Individually or as a cluster, miR-183, -96, and -182 are overexpressed in other cancers too, implicating this miR cluster in carcinogenesis.


Cancer Prevention Research | 2010

Gene Expression Patterns in the Human Breast after Pregnancy

Szilard Asztalos; Peter H. Gann; Meghan K. Hayes; Larisa Nonn; Craig A. Beam; Yang Dai; Elizabeth L. Wiley; Debra A. Tonetti

Epidemiologic studies have established that pregnancy has a bidirectional, time-dependent effect on breast cancer risk; a period of elevated risk is followed by a long-term period of protection. The purpose of the present study was to determine whether pregnancy and involution are associated with gene expression changes in the normal breast, and whether such changes are transient or persistent. We examined the expression of a customized gene set in normal breast tissue from nulliparous, recently pregnant (0-2 years since pregnancy), and distantly pregnant (5-10 years since pregnancy) age-matched premenopausal women. This gene set included breast cancer biomarkers and genes related to immune/inflammation, extracellular matrix remodeling, angiogenesis, and hormone signaling. Laser capture microdissection and RNA extraction were done from formalin-fixed paraffin-embedded reduction mammoplasty and benign biopsy specimens and analyzed using real-time PCR arrays containing 59 pathway-specific and 5 housekeeping genes. We report 14 of 64 (22%) of the selected gene set to be differentially regulated (at P < 0.05 level) in nulliparous versus parous breast tissues. Based on gene set analysis, inflammation-associated genes were significantly upregulated as a group in both parous groups compared with nulliparous women (P = 0.03). Moreover, parous subjects had significantly reduced expression of estrogen receptor α (ERα, ESR1), progesterone receptor (PGR), and ERBB2 (Her2/neu) and 2-fold higher estrogen receptor-β (ESR2) expression compared with nulliparous subjects. These initial data, among the first on gene expression in samples of normal human breast, provide intriguing clues about the mechanisms behind the time-dependent effects of pregnancy on breast cancer risk. Cancer Prev Res; 3(3); 301–11


The Journal of Steroid Biochemistry and Molecular Biology | 2004

Molecular activity of 1,25-dihydroxyvitamin D3 in primary cultures of human prostatic epithelial cells revealed by cDNA microarray analysis.

Donna M. Peehl; Rajesh Shinghal; Larisa Nonn; Eugene Seto; Aruna V. Krishnan; James D. Brooks; David Feldman

1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] exerts anti-proliferative, differentiating and apoptotic effects on prostatic cells. These activities, in addition to epidemiologic findings that link Vitamin D to prostate cancer risk, support the use of 1,25(OH)(2)D(3) for prevention or therapy of prostate cancer. The molecular mechanisms by which 1,25(OH)(2)D(3) exerts antitumor effects on prostatic cells are not well-defined. In addition, there is heterogeneity among the responses of various prostate cell lines and primary cultures to 1,25(OH)(2)D(3) with regard to growth inhibition, differentiation and apoptosis. To understand the basis of these differential responses and to develop a better model of Vitamin D action in the prostate, we performed cDNA microarray analyses of primary cultures of normal and malignant human prostatic epithelial cells, treated with 50 nM of 1,25(OH)(2)D(3) for 6 and 24 h. CYP24 (25-hydroxyvitamin D(3)-24-hydroxylase) was the most highly upregulated gene. Significant and early upregulation of dual specificity phosphatase 10 (DUSP10), validated in five additional primary cultures, points to inhibition of members of the mitogen-activated protein kinase (MAPK) superfamily as a key event mediating activity of 1,25(OH)(2)D(3) in prostatic epithelial cells. The functions of other regulated genes suggest protection by 1,25(OH)(2)D(3) from oxidative stress. Overall, these results provide new insights into the molecular basis of antitumor activities of Vitamin D in prostate cells.


The Journal of Steroid Biochemistry and Molecular Biology | 2007

Novel pathways that contribute to the anti-proliferative and chemopreventive activities of calcitriol in prostate cancer

Aruna V. Krishnan; Jacqueline Moreno; Larisa Nonn; Peter J. Malloy; Srilatha Swami; Lihong Peng; Donna M. Peehl; David Feldman

Calcitriol, the hormonally active form of Vitamin D, inhibits the growth and development of many cancers through multiple mechanisms. Our recent research supports the contributory role of several new and diverse pathways that add to the mechanisms already established as playing a role in the actions of calcitriol to inhibit the development and progression of prostate cancer (PCa). Calcitriol increases the expression of insulin-like growth factor binding protein-3 (IGFBP-3), which plays a critical role in the inhibition of PCa cell growth by increasing the expression of the cell cycle inhibitor p21. Calcitriol inhibits the prostaglandin (PG) pathway by three actions: (i) the inhibition of the expression of cyclooxygenase-2 (COX-2), the enzyme that synthesizes PGs, (ii) the induction of the expression of 15-prostaglandin dehydrogenase (15-PGDH), the enzyme that inactivates PGs and (iii) decreasing the expression of EP and FP PG receptors that are essential for PG signaling. Since PGs have been shown to promote carcinogenesis and progression of multiple cancers, the inhibition of the PG pathway may add to the ability of calcitriol to prevent and inhibit PCa development and growth. The combination of calcitriol and non-steroidal anti-inflammatory drugs (NSAIDs) result in a synergistic inhibition of PCa cell growth and offers a potential therapeutic strategy. Mitogen activated protein kinase phosphatase 5 (MKP5) is a member of a family of phosphatases that are negative regulators of MAP kinases. Calcitriol induces MKP5 expression in prostate cells leading to the selective dephosphorylation and inactivation of the stress-activated kinase p38. Since p38 activation is pro-carcinogenic and is a mediator of inflammation, this calcitriol action, especially coupled with the inhibition of the PG pathway, contributes to the chemopreventive activity of calcitriol in PCa. Mullerian Inhibiting Substance (MIS) has been evaluated for its inhibitory effects in cancers of the reproductive tissues and is in development as an anti-cancer drug. Calcitriol induces MIS expression in prostate cells revealing yet another mechanism contributing to the anti-cancer activity of calcitriol in PCa. Thus, we conclude that calcitriol regulates myriad pathways that contribute to the potential chemopreventive and therapeutic utility of calcitriol in PCa.


Journal of Bone and Mineral Research | 2007

Calcitriol as a chemopreventive and therapeutic agent in prostate cancer: role of anti-inflammatory activity.

Aruna V. Krishnan; Jacqueline Moreno; Larisa Nonn; Srilatha Swami; Donna M. Peehl; David Feldman

Calcitriol, the hormonally active form of vitamin D, inhibits the growth and development of several cancers. Inflammation has been implicated in the development and progression of many cancers, including prostate cancer (PCa). Recent research from our laboratory suggests that calcitriol exhibits anti‐inflammatory actions that may contribute to its inhibitory effects in PCa. We found that calcitriol inhibits the synthesis and actions of pro‐inflammatory prostaglandins (PGs) by three mechanisms: (1) inhibition of the expression of cyclooxygenase‐2 (COX‐2), the enzyme that synthesizes PGs, (2) induction of the expression of 15‐prostaglandin dehydrogenase (15‐PGDH), the enzyme that inactivates PGs, and (3) decreasing the expression of prostaglandin E and prostaglandin F PG receptors, which are the mediators of PG signaling. The combination of calcitriol and nonsteroidal anti‐inflammatory drugs (NSAIDs) result in a synergistic inhibition of PCa cell growth and offers a potential therapeutic strategy. Acting on a separate anti‐inflammatory pathway, calcitriol induces the expression of mitogen‐activated protein kinase phosphatase 5 (MKP5), a member of a family of phosphatases that are negative regulators of MAP kinases, causing the selective dephosphorylation and inactivation of the stress‐activated protein kinase p38. Because p38 activation may be both procarcinogenic and promote inflammation, this calcitriol action, especially coupled with the inhibition of the PG pathway, may contribute to the chemopreventive activity of calcitriol. We conclude that calcitriol exerts several anti‐inflammatory actions in prostate cells, which contribute to its potential as a chemopreventive and therapeutic agent in PCa.


Experimental and Molecular Pathology | 2010

mRNA and micro-RNA expression analysis in laser-capture microdissected prostate biopsies: valuable tool for risk assessment and prevention trials.

Larisa Nonn; Avani Vaishnav; Lindsay Gallagher; Peter H. Gann

Diagnosis of prostate cancer (PCa) typically relies on needle biopsies, which are routinely archived in paraffin after formalin fixation and may contain valuable risk or prognostic information. The objective of this study was to determine the feasibility of mRNA and miRNA expression analysis in laser-capture microdissected (LCM) formalin-fixed paraffin-embedded archived prostate biopsies compared to the gold standard of frozen tissue. We analyzed the expression of compartment-specific and PCa-related genes in epithelial and stromal tissues collected from paired sets of archived prostate biopsies and frozen radical prostatectomy specimens from three patients. Our results showed appropriate compartment-specific and PCa-related expression with good within patient agreement between the FFPE biopsies and the frozen tissue. The potential for both mRNA and micro-RNA expression profiling in the biopsies was also demonstrated using PCR arrays which showed high correlation between the biopsy and frozen tissue, notwithstanding sensitivity limitations for mRNA detection in the FFPE specimen. This is the first study to compare RNA expression from biopsy and frozen tissues from the same patient and to examine miRNA expression in LCM-collected tissue from prostate biopsies. With careful technique and use of appropriate controls, RNA profiling from archived biopsy material is quite feasible showing high correlation to frozen tissue.

Collaboration


Dive into the Larisa Nonn's collaboration.

Top Co-Authors

Avatar

Peter H. Gann

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Avani Vaishnav

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Angeline Antonio Giangreco

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Ryan Deaton

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Brittany L. Mihelich

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shweta Dambal

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Zachary Richards

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Andre Kajdacsy-Balla

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge