Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larissa A. Shimoda is active.

Publication


Featured researches published by Larissa A. Shimoda.


Journal of Biological Chemistry | 2008

Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia

Huafeng Zhang; Marta Bosch-Marce; Larissa A. Shimoda; Yee Sun Tan; Jin Hyen Baek; Jacob B. Wesley; Frank J. Gonzalez; Gregg L. Semenza

Autophagy is a process by which cytoplasmic organelles can be catabolized either to remove defective structures or as a means of providing macromolecules for energy generation under conditions of nutrient starvation. In this study we demonstrate that mitochondrial autophagy is induced by hypoxia, that this process requires the hypoxia-dependent factor-1-dependent expression of BNIP3 and the constitutive expression of Beclin-1 and Atg5, and that in cells subjected to prolonged hypoxia, mitochondrial autophagy is an adaptive metabolic response which is necessary to prevent increased levels of reactive oxygen species and cell death.


Cell | 2007

HIF-1 Regulates Cytochrome Oxidase Subunits to Optimize Efficiency of Respiration in Hypoxic Cells

Ryo Fukuda; Huafeng Zhang; Jung Whan Kim; Larissa A. Shimoda; Chi V. Dang; Gregg L. Semenza

O(2) is the ultimate electron acceptor for mitochondrial respiration, a process catalyzed by cytochrome c oxidase (COX). In yeast, COX subunit composition is regulated by COX5a and COX5b gene transcription in response to high and low O(2), respectively. Here we demonstrate that in mammalian cells, expression of the COX4-1 and COX4-2 isoforms is O(2) regulated. Under conditions of reduced O(2) availability, hypoxia-inducible factor 1 (HIF-1) reciprocally regulates COX4 subunit expression by activating transcription of the genes encoding COX4-2 and LON, a mitochondrial protease that is required for COX4-1 degradation. The effects of manipulating COX4 subunit expression on COX activity, ATP production, O(2) consumption, and reactive oxygen species generation indicate that the COX4 subunit switch is a homeostatic response that optimizes the efficiency of respiration at different O(2) concentrations. Thus, mammalian cells respond to hypoxia by altering COX subunit composition, as previously observed in yeast, but by a completely different molecular mechanism.


Cell | 2011

Control of TH17/Treg Balance by Hypoxia-Inducible Factor 1

Eric V. Dang; Joseph Barbi; Huang Yu Yang; Dilini Jinasena; Hong Yu; Ying Zheng; Zachary Bordman; Juan Fu; Young J. Kim; Hung-Rong Yen; Weibo Luo; Karen I. Zeller; Larissa A. Shimoda; Suzanne L. Topalian; Gregg L. Semenza; Chi V. Dang; Drew M. Pardoll; Fan Pan

T cell differentiation into distinct functional effector and inhibitory subsets is regulated, in part, by the cytokine environment present at the time of antigen recognition. Here, we show that hypoxia-inducible factor 1 (HIF-1), a key metabolic sensor, regulates the balance between regulatory T cell (T(reg)) and T(H)17 differentiation. HIF-1 enhances T(H)17 development through direct transcriptional activation of RORγt and via tertiary complex formation with RORγt and p300 recruitment to the IL-17 promoter, thereby regulating T(H)17 signature genes. Concurrently, HIF-1 attenuates T(reg) development by binding Foxp3 and targeting it for proteasomal degradation. Importantly, this regulation occurs under both normoxic and hypoxic conditions. Mice with HIF-1α-deficient T cells are resistant to induction of T(H)17-dependent experimental autoimmune encephalitis associated with diminished T(H)17 and increased T(reg) cells. These findings highlight the importance of metabolic cues in T cell fate determination and suggest that metabolic modulation could ameliorate certain T cell-based immune pathologies.


Journal of Clinical Investigation | 1999

Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α

Aimee Y. Yu; Larissa A. Shimoda; Narayan V. Iyer; David L. Huso; Xing Sun; Rita McWilliams; Terri H. Beaty; James S K Sham; Charles M. Wiener; J. T. Sylvester; Gregg L. Semenza

Chronic hypoxia induces polycythemia, pulmonary hypertension, right ventricular hypertrophy, and weight loss. Hypoxia-inducible factor 1 (HIF-1) activates transcription of genes encoding proteins that mediate adaptive responses to hypoxia, including erythropoietin, vascular endothelial growth factor, and glycolytic enzymes. Expression of the HIF-1alpha subunit increases exponentially as O2 concentration is decreased. Hif1a-/- mouse embryos with complete deficiency of HIF-1alpha due to homozygosity for a null allele at the Hif1a locus die at midgestation, with multiple cardiovascular malformations and mesenchymal cell death. Hif1a+/- heterozygotes develop normally and are indistinguishable from Hif1a+/+ wild-type littermates when maintained under normoxic conditions. In this study, the physiological responses of Hif1a+/- and Hif1a+/+ mice exposed to 10% O2 for one to six weeks were analyzed. Hif1a+/- mice demonstrated significantly delayed development of polycythemia, right ventricular hypertrophy, pulmonary hypertension, and pulmonary vascular remodeling and significantly greater weight loss compared with wild-type littermates. These results indicate that partial HIF-1alpha deficiency has significant effects on multiple systemic responses to chronic hypoxia.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1998

Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung

Aimee Y. Yu; Maria G. Frid; Larissa A. Shimoda; Charles M. Wiener; Kurt R. Stenmark; Gregg L. Semenza

Hypoxia-inducible factor (HIF)-1 is a basic helix-loop-helix transcription factor that transactivates genes encoding proteins that participate in homeostatic responses to hypoxia. Several of these downstream gene products, such as erythropoietin, vascular endothelial growth factor, heme oxygenase-1, and inducible nitric oxide synthase, may contribute to the pathogenesis of pulmonary hypertension. Previous studies demonstrated increased HIF-1 mRNA levels in rats and mice subjected to hypoxia. In this study, we have demonstrated spatial, temporal, and O2-dependent expression of HIF-1 protein. Immunoblot analysis revealed hypoxic induction of HIF-1 in all cultured pulmonary cell types assayed, including those derived from pulmonary arterial endothelium and smooth muscle, bronchial epithelium, alveolar macrophages, alveolar epithelium, and microvascular endothelium. In contrast to all other cell types, pulmonary arterial smooth muscle cells expressed HIF-1 under nonhypoxic conditions. Immunohistochemistry and immunoblot analysis of ferret lungs demonstrated pulmonary expression of HIF-1 in vivo. HIF-1 protein expression was induced maximally when lungs were ventilated with 0 or 1% O2 for 4 h. On reoxygenation, HIF-1 was rapidly degraded, with a half-life of <1 min. These findings demonstrate that HIF-1 expression is tightly coupled to O2 concentration in vivo and are consistent with the involvement of HIF-1 in the physiological and pathophysiological responses to hypoxia in the lung.Hypoxia-inducible factor (HIF)-1 is a basic helix-loop-helix transcription factor that transactivates genes encoding proteins that participate in homeostatic responses to hypoxia. Several of these downstream gene products, such as erythropoietin, vascular endothelial growth factor, heme oxygenase-1, and inducible nitric oxide synthase, may contribute to the pathogenesis of pulmonary hypertension. Previous studies demonstrated increased HIF-1 mRNA levels in rats and mice subjected to hypoxia. In this study, we have demonstrated spatial, temporal, and O2-dependent expression of HIF-1 protein. Immunoblot analysis revealed hypoxic induction of HIF-1 in all cultured pulmonary cell types assayed, including those derived from pulmonary arterial endothelium and smooth muscle, bronchial epithelium, alveolar macrophages, alveolar epithelium, and microvascular endothelium. In contrast to all other cell types, pulmonary arterial smooth muscle cells expressed HIF-1 under nonhypoxic conditions. Immunohistochemistry and immunoblot analysis of ferret lungs demonstrated pulmonary expression of HIF-1 in vivo. HIF-1 protein expression was induced maximally when lungs were ventilated with 0 or 1% O2 for 4 h. On reoxygenation, HIF-1 was rapidly degraded, with a half-life of <1 min. These findings demonstrate that HIF-1 expression is tightly coupled to O2 concentration in vivo and are consistent with the involvement of HIF-1 in the physiological and pathophysiological responses to hypoxia in the lung.


Circulation Research | 2006

Hypoxia Inducible Factor 1 Mediates Hypoxia-Induced TRPC Expression and Elevated Intracellular Ca2+ in Pulmonary Arterial Smooth Muscle Cells

Jian Wang; Letitia A. Weigand; Wenju Lu; J. T. Sylvester; Gregg L. Semenza; Larissa A. Shimoda

Chronic hypoxia (CH) causes pulmonary vasoconstriction because of increased pulmonary arterial smooth muscle cell (PASMC) contraction and proliferation. We previously demonstrated that intracellular Ca2+ concentration ([Ca2+]i) was elevated in PASMCs from chronically hypoxic rats because of Ca2+ influx through pathways other than L-type Ca2+ channels and that development of hypoxic pulmonary hypertension required full expression of the transcription factor hypoxia inducible factor 1 (HIF-1). In this study, we examined the effect of CH on the activity and expression of store-operated Ca2+ channels (SOCCs) and the regulation of these channels by HIF-1. Capacitative Ca2+ entry (CCE) was enhanced in PASMCs from intrapulmonary arteries of rats exposed to CH (10% O2; 21 days), and exposure to Ca2+-free extracellular solution or SOCC antagonists (SKF96365 or NiCl2) decreased resting [Ca2+]i in these cells. Expression of TRPC1 and TRPC6, but not TRPC4, mRNA and protein was increased in PASMCs from rats and wild-type mice exposed to CH, in PASMCs from normoxic animals cultured under hypoxic conditions (4% O2; 60 hours), and in PASMCs in which HIF-1 was overexpressed under nonhypoxic conditions. Hypoxia-induced increases in basal [Ca2+]i and TRPC expression were absent in mice partially deficient for HIF-1. These results suggest that increased TRPC expression, leading to enhanced CCE through SOCCs, may contribute to hypoxic pulmonary hypertension by facilitating Ca2+ influx and increasing basal [Ca2+]i in PASMCs and that this response is mediated by HIF-1.


American Journal of Respiratory and Critical Care Medicine | 2011

HIF and the lung: Role of hypoxia-inducible factors in pulmonary development and disease

Larissa A. Shimoda; Gregg L. Semenza

The ability to sense and respond to changes in oxygen concentration is a fundamental requirement for the survival of all organisms. Throughout evolution, control of oxygen homeostasis has developed into a complex system, requiring both rapid adjustment to acute changes in oxygen and durable adaptation when the hypoxic stimulus is prolonged. There are numerous instances, in both physiologic and pathophysiologic conditions, during which the lung experiences localized or global hypoxia. It has become increasingly appreciated that adaptation to hypoxia requires the coordinated regulation of a large battery of genes, and that this collective response is controlled, to a large extent, at the level of transcription. In particular, the hypoxia-inducible factors (HIFs), have been identified as key mediators of adaptation to hypoxia. In this review, we will describe the HIF system and its role in a variety of developmental, physiologic, and pathogenic processes within the lung.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1998

Inhibition of voltage-gated K+ current in rat intrapulmonary arterial myocytes by endothelin-1

Larissa A. Shimoda; J. T. Sylvester; James S K Sham

Although endothelin (ET)-1 is an important regulator of pulmonary vascular tone, little is known about the mechanisms by which ET-1 causes contraction in this tissue. Using the whole cell patch-clamp technique in rat intrapulmonary arterial smooth muscle cells, we found that ET-1 and the voltage-dependent K+(KV)-channel antagonist 4-aminopyridine, but not the Ca2+-activated K+-channel antagonist charybdotoxin (ChTX), caused membrane depolarization. In the presence of 100 nM ChTX, ET-1 (10-10to 10-7 M) caused a concentration-dependent inhibition of K+ current (56.2 ± 3.8% at 10-7 M) and increased the rate of current inactivation. These effects of ET-1 on K+ current were markedly reduced by inhibitors of protein kinase C (staurosporine and GF 109203X) and phospholipase C (U-73122) or under Ca2+-free conditions and were mimicked by activators of protein kinase C (phorbol 12-myristate 13-actetate and 1,2-dioctanoyl- sn-glycerol). These data suggest that ET-1 modulated pulmonary vascular reactivity by depolarizing pulmonary arterial smooth muscle, due in part to the inhibition of KV current that occurred via activation of the phospholipase C-protein kinase C signal transduction pathway.Although endothelin (ET)-1 is an important regulator of pulmonary vascular tone, little is known about the mechanisms by which ET-1 causes contraction in this tissue. Using the whole cell patch-clamp technique in rat intrapulmonary arterial smooth muscle cells, we found that ET-1 and the voltage-dependent K+ (Kv)-channel antagonist 4-aminopyridine, but not the Ca(2+)-activated K(+)-channel antagonist charybdotoxin (ChTX), caused membrane depolarization. In the presence of 100 nM ChTX, ET-1 (10(-10) to 10(-7) M) caused a concentration-dependent inhibition of K+ current (56.2 +/- 3.8% at 10(-7) M) and increased the rate of current inactivation. These effects of ET-1 on K+ current were markedly reduced by inhibitors of protein kinase C (staurosporine and GF 109203X) and phospholipase C (U-73122) or under Ca(2+)-free conditions and were mimicked by activators of protein kinase C (phorbol 12-myristate 13-actetate and 1,2-dioctanoyl-sn-glycerol). These data suggest that ET-1 modulated pulmonary vascular reactivity by depolarizing pulmonary arterial smooth muscle, due in part to the inhibition of Kv current that occurred via activation of the phospholipase C-protein kinase C signal transduction pathway.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

Differences in STIM1 and TRPC expression in proximal and distal pulmonary arterial smooth muscle are associated with differences in Ca2+ responses to hypoxia.

Wenju Lu; Jian Wang; Larissa A. Shimoda; J. T. Sylvester

Hypoxic pulmonary vasoconstriction (HPV) requires Ca(2+) influx through store-operated Ca(2+) channels (SOCC) in pulmonary arterial smooth muscle cells (PASMC) and is greater in distal than proximal pulmonary arteries (PA). SOCC may be composed of canonical transient receptor potential (TRPC) proteins and activated by stromal interacting molecule 1 (STIM1). To assess the possibility that HPV is greater in distal PA because store-operated Ca(2+) entry (SOCE) is greater in distal PASMC, we measured intracellular Ca(2+) concentration ([Ca(2+)](i)) and SOCE in primary cultures of PASMC using fluorescent microscopy and the Ca(2+)-sensitive dye fura 2. Both hypoxia (4% O(2)) and KCl (60 mM) increased [Ca(2+)](i). Responses to hypoxia, but not KCl, were greater in distal cells. We measured SOCE in PASMC perfused with Ca(2+)-free solutions containing cyclopiazonic acid to deplete Ca(2+) stores in sarcoplasmic reticulum and nifedipine to prevent Ca(2+) entry through L-type voltage-operated Ca(2+) channels. Under these conditions, the increase in [Ca(2+)](i) caused by restoration of extracellular Ca(2+) and the decrease in fura 2 fluorescence caused by Mn(2+) were greater in distal PASMC, indicating greater SOCE. Moreover, the increase in SOCE caused by hypoxia was also greater in distal cells. Real-time quantitative polymerase chain reaction analysis of PASMC and freshly isolated deendothelialized PA tissue demonstrated expression of STIM1 and five of seven known TRPC isoforms (TRPC1 > TRPC6 > TRPC4 >> TRPC3 approximately TRPC5). For both protein, as measured by Western blotting, and mRNA, expression of STIM1, TRPC1, TRPC6, and TRPC4 was greater in distal than proximal PASMC and PA. These results provide further support for the importance of SOCE in HPV and suggest that HPV is greater in distal than proximal PA because greater numbers and activation of SOCC in distal PASMC generate bigger increases in [Ca(2+)](i).


Journal of Molecular Medicine | 2013

Vascular remodeling in pulmonary hypertension.

Larissa A. Shimoda; Steven S. Laurie

Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions, and the appearance of cells expressing smooth muscle-specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular transdifferentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase, and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting.

Collaboration


Dive into the Larissa A. Shimoda's collaboration.

Top Co-Authors

Avatar

Gregg L. Semenza

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Wang

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

James S K Sham

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clark Undem

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Clark Undem

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ari Zaiman

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Haiyang Jiang

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge