Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larissa Staurengo-Ferrari is active.

Publication


Featured researches published by Larissa Staurengo-Ferrari.


Journal of Natural Products | 2013

Vitexin Inhibits Inflammatory Pain in Mice by Targeting TRPV1, Oxidative Stress, and Cytokines

Sergio M. Borghi; Thacyana T. Carvalho; Larissa Staurengo-Ferrari; Miriam S. N. Hohmann; Phileno Pinge-Filho; Rubia Casagrande; Waldiceu A. Verri

The flavonoid vitexin (1) is a flavone C-glycoside (apigenin-8-C-β-D-glucopyranoside) present in several medicinal and other plants. Plant extracts containing 1 are reported to possess antinociceptive, anti-inflammatory, and antioxidant activities. However, the only evidence that 1 exhibits antinociceptive activity was demonstrated in the acetic acid-induced writhing model. Therefore, the analgesic effects and mechanisms of 1 were evaluated. In the present investigation, intraperitoneal treatment with 1 dose-dependently inhibited acetic acid-induced writhing. Furthermore, treatment with 1 also inhibited pain-like behavior induced by phenyl-p-benzoquinone, complete Freunds adjuvant (CFA), capsaicin (an agonist of transient receptor potential vanilloid 1, TRPV1), and both phases of the formalin test. It was also observed that inhibition of carrageenan-, capsaicin-, and chronic CFA-induced mechanical and thermal hyperalgesia occurred. Regarding the antinociceptive mechanisms of 1, it prevented the decrease of reduced glutathione levels, ferric-reducing ability potential, and free-radical scavenger ability, inhibited the production of hyperalgesic cytokines such as TNF-α, IL-1β, IL-6, and IL-33, and up-regulated the levels of the anti-hyperalgesic cytokine IL-10. These results demonstrate that 1 exhibits an analgesic effect in a variety of inflammatory pain models by targeting TRPV1 and oxidative stress and by modulating cytokine production.


Journal of Natural Products | 2011

Quercetin Reduces Neutrophil Recruitment Induced by CXCL8, LTB4, and fMLP: Inhibition of Actin Polymerization

Fabricio O. Souto; Ana C. Zarpelon; Larissa Staurengo-Ferrari; Victor Fattori; Rubia Casagrande; Maria José Vieira Fonseca; Thiago M. Cunha; Sérgio H. Ferreira; Fernando Q. Cunha; Waldiceu A. Verri

Recent in vitro data have suggested that the flavonoid quercetin (1) does not affect the functioning of neutrophils. Therefore, we evaluated in vivo and in vitro whether or not 1 affects neutrophil function, focusing on recruitment. The in vivo treatment with 1 inhibited in a dose-dependent manner the recruitment of neutrophils to the peritoneal cavity of mice induced by known chemotatic factors such as CXCL1, CXCL5, LTB(4), and fMLP. Furthermore, 1 also inhibited in a concentration-dependent manner the chemoattraction of human neutrophils induced by CXCL8, LTB(4), and fMLP in a Boyden chamber. In vitro treatment with 1 did not affect human neutrophil surface expression of CXCR1, CXCR2, BLT1, or FLPR1, but rather reduced actin polymerization. These results suggest that 1 inhibits actin polymerization, hence, explaining the inhibition of neutrophil recruitment in vivo and in vitro and highlighting its possible usefulness to diminish excessive neutrophil migration during inflammation.


Chemico-Biological Interactions | 2015

Vinpocetine reduces lipopolysaccharide-induced inflammatory pain and neutrophil recruitment in mice by targeting oxidative stress, cytokines and NF-κB.

Kenji W. Ruiz-Miyazawa; Felipe A. Pinho-Ribeiro; Ana C. Zarpelon; Larissa Staurengo-Ferrari; Rangel L. Silva; José C. Alves-Filho; Thiago M. Cunha; Fernando Q. Cunha; Rubia Casagrande; Waldiceu A. Verri

In response to lipopolysaccharide (LPS), tissue resident macrophages and recruited neutrophils produce inflammatory mediators through activation of Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway. These mediators include inflammatory cytokines and reactive oxygen species that, in turn, sensitize nociceptors and lead to inflammatory pain. Vinpocetine is a nootropic drug widely used to treat cognitive and neurovascular disorders, and more recently its anti-inflammatory properties through inhibition of NF-κB activation have been described. In the present study, we used the intraplantar and intraperitoneal LPS stimulus in mice to investigate the effects of vinpocetine pre-treatment (3, 10, or 30mg/kg by gavage) in hyperalgesia, leukocyte recruitment, oxidative stress, and pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-33). LPS-induced NF-κB activation and cytokine production were investigated using RAW 264.7 macrophage cell in vitro. Vinpocetine (30mg/kg) significantly reduces hyperalgesia to mechanical and thermal stimuli, and myeloperoxidase (MPO) activity (a neutrophil marker) in the plantar paw skin, and also inhibits neutrophil and mononuclear cell recruitment, superoxide anion and nitric oxide production, oxidative stress, and cytokine production (TNF-α, IL-1β and IL-33) in the peritoneal cavity. At least in part, these effects seem to be mediated by direct effects of vinpocetine on macrophages, since it inhibited the production of the same cytokines (TNF-α, IL-1β and IL-33) and the NF-κB activation in LPS-stimulated RAW 264.7 macrophages. Our results suggest that vinpocetine represents an important therapeutic approach to treat inflammation and pain induced by a gram-negative bacterial component by targeting NF-κB activation and NF-κB-related cytokine production in macrophages.


Pharmacology, Biochemistry and Behavior | 2013

The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway.

Larissa Staurengo-Ferrari; Sandra S. Mizokami; Jean Jerley Nogueira da Silva; Francisco O.N. da Silva; Eduardo Henrique Silva Sousa; Luiz G. da França; Mariana L. Matuoka; Sandra R. Georgetti; Marcela M. Baracat; Rubia Casagrande; Wander Rogério Pavanelli; Waldiceu A. Verri

The activation of nitric oxide (NO) production is an analgesic mechanism shared by drugs such as morphine and diclofenac. Therefore, the controlled release of low amounts of NO seems to be a promising analgesic approach. In the present study, the antinociceptive effect of the ruthenium NO donor [Ru(bpy)2(NO)SO3](PF6) (complex I) was investigated. It was observed that complex I inhibited in a dose (0.3-10mg/kg)-dependent manner the acetic acid-induced writhing response. At the dose of 1mg/kg, complex I inhibited the phenyl-p-benzoquinone-induced writhing response and formalin- and complete Freunds adjuvant-induced licking and flinch responses. Additionally, complex I also inhibited transient receptor potential cation channel subfamily V member 1 (TRPV1)-dependent overt pain-like behavior induced by capsaicin. Complex I also inhibited the carrageenin-induced mechanical hyperalgesia and increase of myeloperoxidase activity (MPO) in paw skin samples. The inhibitory effect of complex I in the carrageenin-induced hyperalgesia, MPO activity and formalin was prevented by the treatment with ODQ, KT5823 and glybenclamide, indicating that complex I inhibits inflammatory hyperalgesia by activating the cGMP/PKG/ATP-sensitive potassium channel signaling pathway. The present study demonstrates the efficacy of a novel ruthenium NO donor and its analgesic mechanisms.


Journal of Natural Products | 2014

Pimaradienoic acid inhibits inflammatory pain: inhibition of NF-κB activation and cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway.

Maria I. Possebon; Sandra S. Mizokami; Thacyana T. Carvalho; Ana C. Zarpelon; Miriam S. N. Hohmann; Larissa Staurengo-Ferrari; Camila R. Ferraz; Thiago Hideki Hayashida; Anderson R. de Souza; Sérgio Ricardo Ambrósio; Nilton S. Arakawa; Rubia Casagrande; Waldiceu A. Verri

Pimaradienoic acid (1) is a pimarane diterpene (ent-pimara-8(14),15-dien-19-oic acid) extracted at high amounts from various plants including Vigueira arenaria Baker. Compound 1 inhibited carrageenan-induced paw edema and acetic acid-induced abdominal writhing, which are its only known anti-inflammatory activities. Therefore, it is important to further investigate the analgesic effects of 1. Oral administration of 1 (1, 3, and 10 mg/kg) inhibited the acetic acid-induced writhing. This was also observed at 10 mg/kg via sc and ip routes. Both phases of the formalin- and complete Freunds adjuvant (CFA)-induced paw flinch and time spent licking the paw were inhibited by 1. Compound 1 inhibited carrageenan-, CFA-, and PGE2-induced mechanical hyperalgesia. Treatment with 1 inhibited carrageenan-induced production of TNF-α, IL-1β, IL-33, and IL-10 and nuclear factor κB activation. Pharmacological inhibitors also demonstrated that the analgesic effects of 1 depend on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. Compound 1 did not alter plasma levels of AST, ALT, or myeloperoxidase activity in the stomach. These results demonstrate that 1 causes analgesic effects associated with the inhibition of NF-κB activation, reduction of cytokine production, and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway.


Inflammopharmacology | 2016

Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress

Felipe A. Pinho-Ribeiro; Victor Fattori; Ana C. Zarpelon; Sergio M. Borghi; Larissa Staurengo-Ferrari; Thacyana T. Carvalho; José C. Alves-Filho; Fernando Q. Cunha; Thiago M. Cunha; Rubia Casagrande; Waldiceu A. Verri

We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1β, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4–L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice.


Neuroscience Letters | 2014

Bosentan, a mixed endothelin receptor antagonist, induces antidepressant-like activity in mice

Felipe A. Pinho-Ribeiro; Sergio M. Borghi; Larissa Staurengo-Ferrari; Guilherme Bracarense Filgueiras; Celio Estanislau; Waldiceu A. Verri

Endothelins are peptides described initially as potent vasoactive mediators. Recently, studies reported that endothelins can modulate the production and release of cytokines by immune cells. In turn, cytokines are involved in depression disorders and also in the effectiveness of some antidepressants. Therefore, we investigated the effects of treating mice with bosentan, a mixed endothelin receptor antagonist, in widely used models for assessing antidepressant activity of compounds, the forced swimming (FST) and the tail suspension tests (TST). Moreover, the influence of bosentan treatment on circulating IL-6 levels was also addressed after FST. The results show that bosentan treatment induced a bell shaped dose-dependent antidepressant-like effect with increase in circulating IL-6 levels in animals exposed to FST. Bosentan also presented antidepressant-like effect in TST. Similar results were obtained with nortriptyline treatment in the FST and TST. Possible anxiogenic effect of bosentan was excluded using the elevated plus maze test. Therefore, this is the first study to demonstrate the antidepressant-like activity of bosentan in mice, unveiling a previous unrecognized role of endothelin in depression and its possible relation with increased circulating IL-6 levels.


Pharmacological Reports | 2014

Nitroxyl inhibits overt pain-like behavior in mice: role of cGMP/PKG/ATP-sensitive potassium channel signaling pathway

Larissa Staurengo-Ferrari; Ana C. Zarpelon; Daniela T. Longhi-Balbinot; Mario Marchesi; Thiago M. Cunha; José C. Alves-Filho; Fernando Q. Cunha; Sérgio H. Ferreira; Rubia Casagrande; Katrina M. Miranda; Waldiceu A. Verri

BACKGROUND Several lines of evidence have indicated that nitric oxide (NO) plays complex and diverse roles in modulation of pain/analgesia. However, the roles of charged and uncharged congeners of NO are less well understood. In the present study, the antinociceptive effect of the nitroxyl (HNO) donor, Angelis salt (Na2N2O3; AS) was investigated in models of overt pain-like behavior. Moreover, whether the antinociceptive effect of nitroxyl was dependent on the activation of cGMP (cyclic guanosine monophosphate)/PKG (protein kinase G)/ATP-sensitive potassium channels was addressed. METHODS The antinociceptive effect of AS was evaluated on phenyl-p-benzoquinone (PBQ)- and acetic acid-induced writhings and via the formalin test. In addition, pharmacological treatments targeting guanylate cyclase (ODQ), PKG (KT5923) and ATP-sensitive potassium channel (glybenclamide) were used. RESULTS PBQ and acetic acid induced significant writhing responses over 20min. The nociceptive response in these models were significantly reduced in a dose-dependent manner by subcutaneous pre-treatment with AS. Furthermore, AS also inhibited both phases of the formalin test. Subsequently, the inhibitory effect of AS in writhing and flinching responses were prevented by ODQ, KT5823 and glybenclamide, although these inhibitors alone did not alter the writhing score. Furthermore, pretreatment with L-cysteine, an HNO scavenger, confirmed that the antinociceptive effect of AS depends on HNO. CONCLUSION The present study demonstrates the efficacy of a nitroxyl donor and its analgesic mechanisms in overt pain-like behavior by activating the cGMP/PKG/ATP-sensitive potassium channel (K(+)) signaling pathway.


Free Radical Biology and Medicine | 2017

The nitroxyl donor Angeli's salt ameliorates Staphylococcus aureus-induced septic arthritis in mice

Larissa Staurengo-Ferrari; Kenji W. Ruiz-Miyazawa; Felipe A. Pinho-Ribeiro; Talita P. Domiciano; Victor Fattori; Sandra S. Mizokami; Jacinta Sanchez Pelayo; Juliano Bordignon; F. J. C. Figueiredo; Rubia Casagrande; Katrina M. Miranda; Waldiceu A. Verri

Abstract Septic arthritis is a severe and rapidly debilitating disease associated with severe joint pain, inflammation and oxidative stress. Nitroxyl (HNO) has become a nitrogen oxide of significant interest due to its pharmacological endpoints that are potentially favorable for treating varied diseases. However, whether HNO also serves as a treatment to septic arthritis is currently unknown. The aim of this study was to investigate the effect of the HNO donor, Angelis salt (AS), in the outcome of chronic Staphylococcus aureus (S. aureus)‐induced septic arthritis in mice. Daily treatment with AS inhibited mechanical hyperalgesia and inflammation (edema, leukocyte migration, cytokines release and NF‐&kgr;B activation, and oxidative stress) resulting in reduced disease severity (clinical course, histopathological changes, proteoglycan levels in the joints, and osteoclastogenesis). In addition, AS decreased the number of S. aureus colony forming unities in synovial tissue, enhanced the bactericidal effect of macrophages and inhibited the worsening of systemic inflammatory response (leukocyte counts in the lung and systemic proinflammatory cytokine concentration). Our results suggest for the first time the therapeutic potential of AS in a model of septic arthritis by mechanisms involving microbicidal effects, anti‐inflammatory actions and reduction of disease severity. Graphical abstract Figure. No Caption available. HighlightsAngelis salt (AS) reduces S. aureus‐induced articular pain and inflammation.AS reduced S. aureus‐induced cartilage damage and osteoclastogenesis.AS reduced S. aureus‐induced cytokines production and NF‐&kgr;B activation.AS reduced S. aureus‐induced oxidative stress.AS is microbicide and prevents systemic inflammatory response.


PLOS ONE | 2016

Pimaradienoic Acid Inhibits Carrageenan-Induced Inflammatory Leukocyte Recruitment and Edema in Mice: Inhibition of Oxidative Stress, Nitric Oxide and Cytokine Production.

Sandra S. Mizokami; Miriam S. N. Hohmann; Larissa Staurengo-Ferrari; Thacyana T. Carvalho; Ana C. Zarpelon; Maria I. Possebon; Anderson R. de Souza; Rodrigo Cassio Sola Veneziani; Nilton S. Arakawa; Rubia Casagrande; Waldiceu A. Verri

Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation.

Collaboration


Dive into the Larissa Staurengo-Ferrari's collaboration.

Top Co-Authors

Avatar

Waldiceu A. Verri

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Rubia Casagrande

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Fattori

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Ana C. Zarpelon

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Felipe A. Pinho-Ribeiro

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji W. Ruiz-Miyazawa

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Sergio M. Borghi

Universidade Estadual de Londrina

View shared research outputs
Researchain Logo
Decentralizing Knowledge