Larry E. Dillehay
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Larry E. Dillehay.
Journal of Clinical Investigation | 1999
Fred Bunz; Paul M. Hwang; Chris Torrance; Todd Waldman; Yonggang Zhang; Larry E. Dillehay; Jerry R. Williams; Christoph Lengauer; Kenneth W. Kinzler; Bert Vogelstein
We have examined the effects of commonly used chemotherapeutic agents on human colon cancer cell lines in which the p53 pathway has been specifically disrupted by targeted homologous recombination. We found that p53 had profound effects on drug responses, and these effects varied dramatically depending on the drug. The p53-deficient cells were sensitized to the effects of DNA-damaging agents as a result of the failure to induce expression of the cyclin-dependent kinase inhibitor p21. In contrast, p53 disruption rendered cells strikingly resistant to the effects of the antimetabolite 5-fluorouracil (5-FU), the mainstay of adjuvant therapy for colorectal cancer. The effects on 5-FU sensitivity were observed both in vitro and in vivo, were independent of p21, and appeared to be the result of perturbations in RNA, rather than DNA, metabolism. These results have significant implications for future efforts to maximize therapeutic efficacy in patients with defined genetic alterations.
Clinical Cancer Research | 2007
Cherrie K. Donawho; Yan Luo; Yanping Luo; Thomas D. Penning; Joy Bauch; Jennifer J. Bouska; Velitchka Bontcheva-Diaz; Bryan F. Cox; Theodore L. DeWeese; Larry E. Dillehay; Debra Ferguson; Nayereh S. Ghoreishi-Haack; David R. Grimm; Ran Guan; Edward K. Han; Rhonda R. Holley-Shanks; Boris Hristov; Kenneth B. Idler; Ken Jarvis; Eric F. Johnson; Lawrence Kleinberg; Vered Klinghofer; Loren M. Lasko; Xuesong Liu; Kennan C. Marsh; Thomas McGonigal; Jonathan A. Meulbroek; Amanda M. Olson; Joann P. Palma; Luis E. Rodriguez
Purpose: To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888. Experimental Design:In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation. Results: ABT-888 is a potent inhibitor of both PARP-1 and PARP-2 with Kis of 5.2 and 2.9 nmol/L, respectively. The compound has good oral bioavailability and crosses the blood-brain barrier. ABT-888 strongly potentiated temozolomide in the B16F10 s.c. murine melanoma model. PARP inhibition dramatically increased the efficacy of temozolomide at ABT-888 doses as low as 3.1 mg/kg/d and a maximal efficacy achieved at 25 mg/kg/d. In the 9L orthotopic rat glioma model, temozolomide alone exhibited minimal efficacy, whereas ABT-888, when combined with temozolomide, significantly slowed tumor progression. In the MX-1 breast xenograft model (BRCA1 deletion and BRCA2 mutation), ABT-888 potentiated cisplatin, carboplatin, and cyclophosphamide, causing regression of established tumors, whereas with comparable doses of cytotoxic agents alone, only modest tumor inhibition was exhibited. Finally, ABT-888 potentiated radiation (2 Gy/d × 10) in an HCT-116 colon carcinoma model. In each model, ABT-888 did not display single-agent activity. Conclusions: ABT-888 is a potent inhibitor of PARP, has good oral bioavailability, can cross the blood-brain barrier, and potentiates temozolomide, platinums, cyclophosphamide, and radiation in syngeneic and xenograft tumor models. This broad spectrum of chemopotentiation and radiopotentiation makes this compound an attractive candidate for clinical evaluation.
Journal of Clinical Investigation | 1998
Rajani Ravi; Erich Weber; Martin McMahon; Jerry R. Williams; Stephen B. Baylin; Asoke Mal; Marian L. Harter; Larry E. Dillehay; Pier Paolo Claudio; Antonio Giordano; Barry D. Nelkin; Mack Mabry
Small cell lung cancer (SCLC) accounts for 25% of all lung cancers, and is almost uniformly fatal. Unlike other lung cancers, ras mutations have not been reported in SCLC, suggesting that activation of ras-associated signal transduction pathways such as the raf-MEK mitogen-activated protein kinases (MAPK) are associated with biological consequences that are unique from other cancers. The biological effects of raf activation in small cell lung cancer cells was determined by transfecting NCI-H209 or NCI-H510 SCLC cells with a gene encoding a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the estrogen receptor (DeltaRaf-1:ER), which can be activated with estradiol. DeltaRaf-1:ER activation resulted in phosphorylation of MAPK. Activation of this pathway caused a dramatic loss of soft agar cloning ability, suppression of growth capacity, associated with cell accumulation in G1 and G2, and S phase depletion. Raf activation in these SCLC cells was accompanied by a marked induction of the cyclin-dependent kinase (cdk) inhibitor p27(kip1), and a decrease in cdk2 protein kinase activities. Each of these events can be inhibited by pretreatment with the MEK inhibitor PD098059. These data demonstrate that MAPK activation by DeltaRaf-1:ER can activate growth inhibitory pathways leading to cell cycle arrest. These data suggest that raf/MEK/ MAPK pathway activation, rather than inhibition, may be a therapeutic target in SCLC and other neuroendocrine tumors.
Journal of Biological Chemistry | 2004
Spencer J. Collis; Julie M. Schwaninger; Alfred J. Ntambi; Thomas W. Keller; William G. Nelson; Larry E. Dillehay; Theodore L. DeWeese
DNA damage that is not repaired with high fidelity can lead to chromosomal aberrations or mitotic cell death. To date, it is unclear what factors control the ultimate fate of a cell receiving low levels of DNA damage (i.e. survival at the risk of increased mutation or cell death). We investigated whether DNA damage could be introduced into human cells at a level and frequency that could evade detection by cellular sensors of DNA damage. To achieve this, we exposed cells to equivalent doses of ionizing radiation delivered at either a high dose rate (HDR) or a continuous low dose rate (LDR). We observed reduced activation of the DNA damage sensor ataxia-telangiectasia mutated (ATM) and its downstream target histone H2A variant (H2AX) following LDR compared with HDR exposures in both cancerous and normal human cells. This lack of DNA damage signaling was associated with increased amounts of cell killing following LDR exposures. Increased killing by LDR radiation has been previously termed the “inverse dose rate effect,” an effect for which no clear molecular processes have been described. These LDR effects could be abrogated by the preactivation of ATM or simulated in HDR-treated cells by inhibiting ATM function. These data are the first to demonstrate that DNA damage introduced at a reduced rate does not activate the DNA damage sensor ATM and that failure to activate ATM-associated repair pathways contributes to the increased lethality of continuous LDR radiation exposures. This inactivation may reflect one strategy by which cells avoid accumulating mutations as a result of error-prone DNA repair and may have a broad range of implications for carcinogenesis and, potentially, the clinical treatment of solid tumors.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Chetan Bettegowda; Long H. Dang; Ross A. Abrams; David L. Huso; Larry E. Dillehay; Ian Cheong; Nishant Agrawal; Scott Borzillary; J. Michael McCaffery; E. Latice Watson; Kuo Shyan Lin; Fred Bunz; Kwamena E. Baidoo; Martin G. Pomper; Kenneth W. Kinzler; Bert Vogelstein; Shibin Zhou
The low level of oxygenation within tumors is a major cause of radiation treatment failures. We theorized that anaerobic bacteria that can selectively destroy the hypoxic regions of tumors would enhance the effects of radiation. To test this hypothesis, we used spores of Clostridium novyi-NT to treat transplanted tumors in mice. The bacteria were found to markedly improve the efficacy of radiotherapy in several of the mouse models tested. Enhancement was noted with external beam radiation derived from a Cs-137 source, systemic radioimmunotherapy with an I-131-conjugated monoclonal antibody, and a previously undescribed form of experimental brachytherapy using plaques loaded with I-125 seeds. C. novyi-NT spores added little toxicity to the radiotherapeutic regimens, and the combination resulted in long-term remissions in a significant fraction of animals.
The Journal of Urology | 1998
Theodore L. DeWeese; Jennifer M. Shipman; Larry E. Dillehay; William G. Nelson
PURPOSE Low dose rate radioemitters, such as 125I, 103Pd, and 89Sr, have been used both for local and systemic treatment of prostate cancer. Most normal cells exposed to ionizing radiation characteristically activate cell cycle checkpoints, resulting in cell cycle arrest at the G1/S and G2/M transition points. Cancer cells are typically quite sensitive to radiation killing late in the G2 phase of the replicative cell cycle. Furthermore, most cancer cells accumulating at the G2/M transition point as a result of low dose rate radiation exposure appear to become sensitive to further low dose rate irradiation. For this reason, protracted exposure of cancer cells to low dose rate radiation has been proposed to result in increased cancer cell killing as compared with brief exposures of cancer cells to high dose rate radiation. Since many human prostatic carcinomas contain somatic genome alterations targeting genes which affect the cell cycle and radiation-associated cell cycle checkpoints, we evaluated the effects of low dose rate radiation exposure on the cell cycle and on clonogenic survival for various human prostatic carcinoma cell lines. MATERIALS AND METHODS Human prostatic carcinoma cells from the LNCaP, DU 145, PC-3, PPC-1, and TSU-Pr1 cell lines were exposed to low dose rate (0.25 Gy/hour) or high dose rate (60 Gy/hour) radiation in vitro and then assessed for radiation cytotoxicity by clonogenic survival assay. Cell cycle perturbations following protracted exposure to low dose rate radiation were evaluated using flow cytometry. RESULTS For LNCaP cells, low dose rate radiation exposure resulted in an accumulation of cells at both the G1/S and the G2/M cell cycle transition points. For DU 145, PC-3, PPC-1, and TSU-Pr1 cells, treatment with low dose rate radiation triggered G2/M cell cycle arrest, but not G1/S arrest. Unexpectedly, the cell cycle redistribution pattern phenotypes observed, G1/S and G2/M cell cycle arrest versus G2/M arrest alone, appeared to have little effect on low dose rate radiation survival. Furthermore, while PC-3, PPC-1, and TSU-Pr1 cells exhibited increased cytotoxic sensitivity to low dose rate versus fractionated high dose rate radiation treatment, DU 145 and LNCaP cells did not. CONCLUSIONS Radiation-associated pertubations in replicative cell cycle progression were not dominant determinants of low dose rate radiation killing efficacy in human prostate cancer cell lines in vitro.
Journal of Cellular Biochemistry | 1999
Rajani Ravi; Martin McMahon; Zang Yangang; Jerry R. Williams; Larry E. Dillehay; Barry D. Nelkin; Mack Mabry
Prostate cancer is the most commonly diagnosed neoplasm in men. LNCaP cells continue to possess many of the molecular characteristics of in situ prostate cancer. These cells lack ras mutations, and mitogen‐activated protein kinase (MAPK) is not extensively phosphorylated in these cells. To determine the effects of ras/raf/MAPK pathway activation in these cells, we transfected LNCaP cells with an activatable form of c‐raf‐1(ΔRaf‐1:ER). Activation of ΔRaf‐1:ER, with resultant MAPK activation, reduced plating efficiency and soft agarose cloning efficiency 30‐fold in LNCaP cells. Cell cycle distribution showed an accumulation of cells in G1 and was associated with the induction of CDK inhibitor p21WAF1/CIP1 at the protein and mRNA levels. p21WAF1/CIP1 mRNA stability was increased after ΔRaf‐1:ER activation. In addition, activated ΔRaf‐1:ER induced the senescence associated‐β‐galactosidase in LNCaP cells. These data demonstrate that raf activation can activate growth inhibitory pathways leading to growth suppression in prostate carcinoma cells and also suggest that raf/MEK/MAPK pathway activation, rather than inhibition, may be a therapeutic target for some human prostate cancer cells. J. Cell. Biochem. 72:458–469, 1999.
International Journal of Radiation Oncology Biology Physics | 1997
Theodore L. DeWeese; Jonathan Walsh; Larry E. Dillehay; Theodore D. Kessis; Lora Hedrick; Kathleen R. Cho; William G. Nelson
PURPOSE Low-dose-rate radiation therapy has been widely used in the treatment of urogenital malignancies. When continuously exposed to low-dose-rate ionizing radiation, target cancer cells typically exhibit abnormalities in replicative cell-cycle progression. Cancer cells that arrest in the G2 phase of the cell cycle when irradiated may become exquisitely sensitive to killing by further low-dose-rate radiation treatment. Oncogenic human papillomaviruses (HPVs), which play a major role in the pathogenesis of uterine cervix cancers and other urogenital cancers, encode E6 and E7 transforming proteins known to abrogate a p53-dependent G1 cell-cycle checkpoint activated by conventional acute-dose radiation exposure. This study examined whether expression of HPV E6 and E7 oncoproteins by cancer cells alters the cell-cycle redistribution patterns accompanying low-dose-rate radiation treatment, and whether such alterations in cell-cycle redistribution affect cancer cell killing. METHODS AND MATERIALS RKO carcinoma cells, which contain wild-type P53 alleles, and RKO cell sublines genetically engineered to express HPV E6 and E7 oncoproteins, were treated with low-dose-rate (0.25-Gy/h) radiation and then assessed for p53 and p21WAF1/CIP1 polypeptide induction by immunoblot analysis, for cell-cycle redistribution by flow cytometry, and for cytotoxicity by clonogenic survival assay. RESULTS Low-dose-rate radiation of RKO carcinoma cells triggered p53 polypeptide elevations, p21WAF1/CIP1 induction, and arrest in the G1 and G2 phases of the cell cycle. In contrast, RKO cells expressing E6 and E7 transforming proteins from high-risk oncogenic HPVs (HPV 16) arrested in G2, but failed to arrest in G1, when treated with low-dose-rate ionizing radiation. Abrogation of the G1 cell-cycle checkpoint activated by low-dose-rate radiation exposure appeared to be a characteristic feature of transforming proteins from high-risk oncogenic HPVs: RKO cells expressing E6 from a low-risk nononcogenic HPV (HPV 11) exposed to low-dose-rate radiation arrested in both G1 and G2. Surprisingly, despite differences in cell-cycle redistribution accompanying low-dose-rate radiation treatment associated with high-risk HPV transforming protein expression, no consistent differences in clonogenic survival following low-dose-rate radiation treatment were found for RKO cell sublines expressing high-risk HPV oncoproteins and arresting only in G2 during low-dose-rate radiation exposure vs. RKO cell sublines exhibiting both G1 and G2 cell-cycle arrest when irradiated. CONCLUSION The results of this study demonstrate that neither HPV oncoprotein expression nor loss of the radiation-activated G1 cell-cycle checkpoint alter the sensitivity of RKO carcinoma cell lines to low-dose-rate radiation exposure in vitro. Perhaps for urogenital malignancies associated with oncogenic HPVs in vivo, HPV oncoprotein-mediated abrogation of the G1 cell-cycle checkpoint may not limit the potential efficacy of low-dose-rate radiation therapy.
International Journal of Radiation Oncology Biology Physics | 1991
Lorraine Marin; Charles E. Smith; Monique Y. Langston; Dawn Quashie; Larry E. Dillehay
Glioblastoma U251 and U87 cells irradiated with single fraction high dose rate radiation (1.1 Gy/min) were relatively insensitive to inactivation of colony forming ability, similar to other glioblastoma cell lines. Initial rates of cell kill with continuous low dose rate irradiation (0.075 Gy/hr to 0.49 Gy/hr) were low, but at times greater than 20 hours and with dose rates of 0.25 Gy/hr or higher, the rate of cell kill increased. Population doubling times for these cell lines were about 24 hours, suggesting that cell cycle redistribution may be responsible for the increased sensitivity. DNA histograms obtained by flow cytometry support this hypothesis, with cells accumulating in the G2 and M phases of the cell cycle. These results suggest that low dose rate irradiation may be effective in treating glioblastomas. Optimization of time intervals between radiation treatments as well as dose rates used for glioblastoma patients may be influenced by these findings, resulting in better integration of continuous low-dose-rate irradiation (radioactive antibodies and implants) and high-dose-rate irradiation (fractionated external beam) into therapeutic programs.
Radiation Research | 1990
Larry E. Dillehay
A computer model that simulates the killing of exponentially growing cells by low-dose-rate radiation is described. The model incorporates cell killing by single-hit damage and double-hit (sublethal) damage, as well as repair of sublethal damage, delay of cell cycle progression, blockage and increased sensitivity of cells in the G2 phase of the cell cycle, and cell division. Seven cellular parameters determine the rate of cell killing. Initial estimates of most of these parameters can be made from independent experiments. Parameters were obtained that gave the best fit to the data for four cell lines, using constant or variable dose rates, and using as end points either the fraction of single cells forming colonies or the total number of clonogenic cells in a mass culture. Some of the parameters were determined to be insignificant or similar for the four cell lines. The main differences between the cell lines in patterns of cell killing over a range of dose rates appeared to be determined by differences in the values of four of the parameters.