Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larry J. Suva is active.

Publication


Featured researches published by Larry J. Suva.


Clinical Cancer Research | 2006

Basic Mechanisms Responsible for Osteolytic and Osteoblastic Bone Metastases

Theresa A. Guise; Khalid S. Mohammad; Gregory A. Clines; Elizabeth G. Stebbins; Darren H. Wong; Linda S. Higgins; Robert L. Vessella; Eva Corey; Susan S. Padalecki; Larry J. Suva; John M. Chirgwin

Certain solid tumors metastasize to bone and cause osteolysis and abnormal new bone formation. The respective phenotypes of dysregulated bone destruction and bone formation represent two ends of a spectrum, and most patients will have evidence of both. The mechanisms responsible for tumor growth in bone are complex and involve tumor stimulation of the osteoclast and the osteoblast as well as the response of the bone microenvironment. Furthermore, factors that increase bone resorption, independent of tumor, such as sex steroid deficiency, may contribute to this vicious cycle of tumor growth in bone. This article discusses mechanisms and therapeutic implications of osteolytic and osteoblastic bone metastases.


Bone | 2003

Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease

Manali S. Bendre; Donna Montague; Terry Peery; Nisreen S. Akel; Dana Gaddy; Larry J. Suva

Interleukin 8 (IL-8) is a member of the alpha chemokine family of cytokines originally identified as a neutrophil chemoattractant. Recently, we reported that elevated levels of IL-8, but not parathyroid hormone-related protein (PTHrP), correlated with increased bone metastasis in a population of human breast cancer cells. We hypothesized that IL-8 expression by breast cancer cells would either indirectly influence osteoclastogenesis via nearby stromal cells or directly influence osteoclast differentiation and activity. In the present study, we investigated the role of IL-8 in the process of osteoclast formation and bone resorption, which is associated with metastatic breast cancer. The addition of recombinant human (rh) IL-8 (10 ng/ml) to cultures of stromal osteoblastic cells stimulated both RANKL mRNA expression and protein production, with no effect on the expression of osteoprotegerin. In addition, rhIL-8 also directly stimulated the differentiation of human peripheral blood mononuclear cells into bone-resorbing osteoclasts. In these cultures, IL-8 was able to stimulate human osteoclast formation even in the presence of excess (200 ng/ml) RANK-Fc. The effect of IL-8 on osteoclasts and their progenitors was associated with the cell surface expression of the IL-8-specific receptor (CXCR1) on the cells. These results demonstrate a direct effect of IL-8 on osteoclast differentiation and activity. Together, these data implicate IL-8 in the osteolysis associated with metastatic breast cancer.


Bone | 1997

Mechanically regulated expression of a neural glutamate transporter in bone: A role for excitatory amino acids as osteotropic agents?

Deborah Jane Mason; Larry J. Suva; Paul G. Genever; Amanda J. Patton; S. Steuckle; R.A. Hillam; T.M Skerry

Without habitual exercise, bone is lost from the skeleton. Interactions between the effects of loading of bone and other osteotropic influences are thought to regulate bone mass. In an attempt to identify potential targets for therapeutic manipulation of bone mass, we used differential RNA display to investigate early changes in osteocyte gene expression following mechanical loading of rat bone in vivo. One gene found to be down-regulated by loading had high homology to a glutamate/ aspartate transporter (GLAST) previously identified only the mammalian CNS. RT-PCR analysis using primers targeted to the coding region of the published GLAST sequence amplified identical products from bone and brain (but not a range of other tissues). The amplicons were sequenced and found to be identical to the published CNS GLAST sequence. Northern analysis confirmed expression of GLAST mRNA in bone and brain, but not other tissues. In situ hybridization localized GLAST mRNA expression in rat bone to osteoblasts and osteocytes. A GLAST antibody localized high levels of protein expression to osteoblasts, and newly incorporated osteocytes. Interestingly, older osteocytes also expressed detectable levels of GLAST. Another neural glutamate transporter, GLT-1 was immunolocalized to the pericellular region of mononuclear bone marrow cells, while a further antibody to the EAAC-1 transporter failed to bind to bone cells. Five days after loading, GLAST protein expression was undetectable in osteocytes of loaded bone but present in control nonloaded sections, confirming the downregulation detected by differential display. On quiescent periosteal surfaces, GLAST expression was almost absent, while on surfaces where loading had induced cellular proliferation and bone formation, GLAST protein expression was elevated. In the CNS, the expression of glutamate transporters on neuronal membranes is associated with reuptake of released neurotransmitters at synapses, where they have a role in the termination of transmitter action. In this study, we describe for the first time, the expression of GLAST (and GLT-1) in bone, raising the possibility that excitatory amino acids may have a role in paracrine intercellular communication in bone. Manipulation of bone cell function by moderators of glutamate action could therefore provide novel treatments for bone diseases such as osteoporosis.


Cancer Research | 2005

Tumor-Derived Interleukin-8 Stimulates Osteolysis Independent of the Receptor Activator of Nuclear Factor-κB Ligand Pathway

Manali S. Bendre; Aaron G. Margulies; Brandon Walser; Nisreen S. Akel; Sudeepa Bhattacharrya; Robert A. Skinner; Frances L. Swain; Vishnu C. Ramani; Khalid S. Mohammad; Lisa L. Wessner; Alfredo Martínez; Theresa A. Guise; John M. Chirgwin; Dana Gaddy; Larry J. Suva

Bone is a common site of cancer metastasis. Breast, prostate, and lung cancers show a predilection to metastasize to bone. Recently, we reported that the chemokine interleukin 8 (IL-8) stimulates both human osteoclast formation and bone resorption. IL-8 mRNA expression was surveyed in a panel of human breast cancer lines MDA-MET, MDA-MB-231, MDA-MB-435, MCF-7, T47D, and ZR-75, and the human lung adenocarcinoma cell line A549. IL-8 mRNA expression was higher in cell lines with higher osteolytic potential in vivo. Human osteoclast formation was increased by MDA-MET or A549 cell-conditioned medium, but not by MDA-MB-231. Pharmacologic doses of receptor activator of nuclear factor-kappaB (RANK)-Fc or osteoprotogerin had no effect on the pro-osteoclastogenic activity of the conditioned medium; however, osteoclast formation stimulated by conditioned medium was inhibited 60% by an IL-8-specific neutralizing antibody. The data support a model in which tumor cells cause osteolytic bone destruction independently of the RANK ligand (RANKL) pathway. Tumor-produced IL-8 is a major contributor to this process. The role of secreted IL-8 isoforms was examined by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry, which detected distinct IL-8 isoforms secreted by MDA-MET and MDA-231 cells, suggesting different pro-osteoclastogenic activities of the two IL-8-derived peptides. These data indicate that (a) osteoclast formation induced by MDA-MET breast cancer cells and A549 adenocarcinoma cells is primarily mediated by IL-8, (b) cell-specific isoforms of IL-8 with distinct osteoclastogenic activities are produced by tumor cells, and (c) tumor cells that support osteoclast formation independent of RANKL secrete other pro-osteoclastogenic factors in addition to IL-8.


Journal of Biological Chemistry | 2000

Potent and Selective Nonpeptide Inhibitors of Caspases 3 and 7 Inhibit Apoptosis and Maintain Cell Functionality

Dennis Lee; Scott A. Long; Jerry L. Adams; George K. Chan; Kalindi Vaidya; Terry A. Francis; Kristine Kikly; James D. Winkler; Chiu-Mei Sung; Christine Debouck; Susan Richardson; Mark A. Levy; Walter E. DeWolf; Paul M. Keller; Thaddeus A. Tomaszek; Martha S. Head; M. Dominic Ryan; R. Curtis Haltiwanger; Po-Huang Liang; Cheryl A. Janson; Patrick McDevitt; Kyung Johanson; Nestor O. Concha; Winnie Chan; Sherin S. Abdel-Meguid; Alison M. Badger; Michael W. Lark; Daniel P. Nadeau; Larry J. Suva; Maxine Gowen

Caspases have been strongly implicated to play an essential role in apoptosis. A critical question regarding the role(s) of these proteases is whether selective inhibition of an effector caspase(s) will prevent cell death. We have identified potent and selective non-peptide inhibitors of the effector caspases 3 and 7. The inhibition of apoptosis and maintenance of cell functionality with a caspase 3/7-selective inhibitor is demonstrated for the first time, and suggests that targeting these two caspases alone is sufficient for blocking apoptosis. Furthermore, an x-ray co-crystal structure of the complex between recombinant human caspase 3 and an isatin sulfonamide inhibitor has been solved to 2.8-Å resolution. In contrast to previously reported peptide-based caspase inhibitors, the isatin sulfonamides derive their selectivity for caspases 3 and 7 by interacting primarily with the S2 subsite, and do not bind in the caspase primary aspartic acid binding pocket (S1). These inhibitors blocked apoptosis in murine bone marrow neutrophils and human chondrocytes. Furthermore, in camptothecin-induced chondrocyte apoptosis, cell functionality as measured by type II collagen promoter activity is maintained, an activity considered essential for cartilage homeostasis. These data suggest that inhibiting chondrocyte cell death with a caspase 3/7-selective inhibitor may provide a novel therapeutic approach for the prevention and treatment of osteoarthritis, or other disease states characterized by excessive apoptosis.


Nature Reviews Endocrinology | 2011

Bone metastasis: mechanisms and therapeutic opportunities

Larry J. Suva; Charity L. Washam; Richard W. Nicholas; Robert J. Griffin

The skeleton is one of the most common sites for metastatic cancer, and tumors arising from the breast or prostate possess an increased propensity to spread to this site. The growth of disseminated tumor cells in the skeleton requires tumor cells to inhabit the bone marrow, from which they stimulate local bone cell activity. Crosstalk between tumor cells and resident bone and bone marrow cells disrupts normal bone homeostasis, which leads to tumor growth in bone. The metastatic tumor cells have the ability to elicit responses that stimulate bone resorption, bone formation or both. The net result of these activities is profound skeletal destruction that can have dire consequences for patients. The molecular mechanisms that underlie these painful and often incurable consequences of tumor metastasis to bone are beginning to be recognized, and they represent promising new molecular targets for therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Indian Hedgehog produced by postnatal chondrocytes is essential for maintaining a growth plate and trabecular bone

Yukiko Maeda; Eiichiro Nakamura; Minh-Thanh Nguyen; Larry J. Suva; Frances L. Swain; Mohammed S. Razzaque; Susan Mackem; Beate Lanske

Indian hedgehog (Ihh) is essential for chondrocyte and osteoblast proliferation/differentiation during prenatal endochondral bone formation. The early lethality of various Ihh-ablated mutant mice, however, prevented further analysis of its role in postnatal bone growth and development. In this study, we describe the generation and characterization of a mouse model in which the Ihh gene was successfully ablated from postnatal chondrocytes in a temporal/spatial-specific manner; postnatal deletion of Ihh resulted in loss of columnar structure, premature vascular invasion, and formation of ectopic hypertrophic chondrocytes in the growth plate. Furthermore, destruction of the articular surface in long bones and premature fusion of growth plates of various endochondral bones was evident, resulting in dwarfism in mutant mice. More importantly, these mutant mice exhibited continuous loss of trabecular bone over time, which was accompanied by reduced Wnt signaling in the osteoblastic cells. These results demonstrate, for the first time, that postnatal chondrocyte-derived Ihh is essential for maintaining the growth plate and articular surface and is required for sustaining trabecular bone and skeletal growth.


Journal of Biological Chemistry | 1998

Parathyroid Hormone-Receptor Interactions Identified Directly by Photocross-linking and Molecular Modeling Studies

Alessandro Bisello; Amy E. Adams; Dale F. Mierke; Maria Pellegrini; Michael Rosenblatt; Larry J. Suva; Michael Chorev

Direct mapping of the interface between parathyroid hormone (PTH) and its receptor (hPTH1-Rc) was carried out by photoaffinity scanning studies. Photoreactive analogs of PTH singularly substituted with a p-benzoylphenylalanine (Bpa) at each of the first six N-terminal positions have been prepared. Among these, the analog [Bpa1,Nle8,18,Arg13,26,27,l-2-Nal23,Tyr34]bPTH-(1–34)NH2(Bpa1-PTH-(1–34)) displayed in vitroactivity with potency similar to that of PTH-(1–34). The radioiodinated analog 125I-Bpa1-PTH-(1–34) cross-linked specifically to the hPTH1-Rc stably expressed in human embryonic kidney cells. A series of chemical and enzymatic digestions of the hPTH1-Rc–125I-Bpa1-PTH-(1–34) conjugate suggested that a methionine residue (either Met414 or Met425) within the contact domain hPTH1-Rc-(409–437), which includes the transmembrane helix 6 and part of the third extracellular loop, as the putative contact point. Site-directed mutagenesis (M414L or M425L) identified Met425 as the putative contact point. Molecular modeling of the hPTH1-Rc together with the NMR-derived high resolution structure of hPTH-(1–34), guided by the cross-linking data, strongly supports Met425, at the extracellular end of transmembrane helix 6, as the residue interacting with the N-terminal residue of the hPTH-(1–34). The photocross-linking and molecular modeling studies provide insight into the topologic arrangement of the receptor-ligand complex.


Bone | 1998

Expression of an N-Methyl-D-Aspartate-Type Receptor by Human and Rat Osteoblasts and Osteoclasts Suggests a Novel Glutamate Signaling Pathway in Bone

Amanda J. Patton; Paul G. Genever; M.A Birch; Larry J. Suva; T.M Skerry

Signaling between the various types of cells found in bone is responsible for controlling the activity of osteoblasts and osteoclasts, and therefore the regulation of bone mass. Our identification of a neuronal glutamate transporter in osteoblasts and osteocytes suggests the possibility that bone cells may use the excitatory amino acid glutamate as a signaling molecule. In these studies we report the expression of different subtypes of glutamate receptors in osteoblasts and osteoclasts in vitro and in vivo. We have identified expression in human and rat bone cells of N-methyl-D-aspartate receptor-1 (NMDAR-1) and 2D subunits and PSD-95, the NMDA receptor clustering protein associated with signaling in the central nervous system. In situ hybridization and immunohistochemistry localized NMDAR-1 expression to osteoblasts and osteoclasts in human tissue sections. These findings strengthen the suggestion that glutamate is involved in signaling between bone cells.


PLOS ONE | 2009

Pharmacologic Inhibition of the TGF-β Type I Receptor Kinase Has Anabolic and Anti-Catabolic Effects on Bone

Khalid S. Mohammad; Carol Chen; Guive Balooch; Elizabeth G. Stebbins; C. Ryan McKenna; Holly W. Davis; Xiang Hong Peng; Daniel H. N. Nguyen; Sophi S. Ionova-Martin; John W. Bracey; William R. Hogue; Darren H. Wong; Robert O. Ritchie; Larry J. Suva; Rik Derynck; Theresa A. Guise; Tamara Alliston

During development, growth factors and hormones cooperate to establish the unique sizes, shapes and material properties of individual bones. Among these, TGF-β has been shown to developmentally regulate bone mass and bone matrix properties. However, the mechanisms that control postnatal skeletal integrity in a dynamic biological and mechanical environment are distinct from those that regulate bone development. In addition, despite advances in understanding the roles of TGF-β signaling in osteoblasts and osteoclasts, the net effects of altered postnatal TGF-β signaling on bone remain unclear. To examine the role of TGF-β in the maintenance of the postnatal skeleton, we evaluated the effects of pharmacological inhibition of the TGF-β type I receptor (TβRI) kinase on bone mass, architecture and material properties. Inhibition of TβRI function increased bone mass and multiple aspects of bone quality, including trabecular bone architecture and macro-mechanical behavior of vertebral bone. TβRI inhibitors achieved these effects by increasing osteoblast differentiation and bone formation, while reducing osteoclast differentiation and bone resorption. Furthermore, they induced the expression of Runx2 and EphB4, which promote osteoblast differentiation, and ephrinB2, which antagonizes osteoclast differentiation. Through these anabolic and anti-catabolic effects, TβRI inhibitors coordinate changes in multiple bone parameters, including bone mass, architecture, matrix mineral concentration and material properties, that collectively increase bone fracture resistance. Therefore, TβRI inhibitors may be effective in treating conditions of skeletal fragility.

Collaboration


Dive into the Larry J. Suva's collaboration.

Top Co-Authors

Avatar

Dana Gaddy

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Nisreen S. Akel

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Robert A. Skinner

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corey O. Montgomery

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Frances L. Swain

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Maurizio Zangari

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Shmuel Yaccoby

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

William R. Hogue

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge