Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larry Junck is active.

Publication


Featured researches published by Larry Junck.


Clinical Cancer Research | 2006

Phase I/II Study of Imatinib Mesylate for Recurrent Malignant Gliomas: North American Brain Tumor Consortium Study 99-08

Patrick Y. Wen; W. K. Alfred Yung; Kathleen R. Lamborn; Patricia L M Dahia; Yanfeng Wang; Bin Peng; Lauren E. Abrey; Jeffrey Raizer; Timothy F. Cloughesy; Karen Fink; Mark R. Gilbert; Susan M. Chang; Larry Junck; David Schiff; Frank S. Lieberman; Howard A. Fine; Minesh P. Mehta; H. Ian Robins; Lisa M. DeAngelis; Morris D. Groves; Vinay K. Puduvalli; Victor A. Levin; Charles A. Conrad; Elizabeth A. Maher; Kenneth D. Aldape; Michael Hayes; Merrill J. Egorin; Renaud Capdeville; Richard S. Kaplan; Anthony J. Murgo

Purpose: Phase I: To determine the maximum tolerated doses, toxicities, and pharmacokinetics of imatinib mesylate (Gleevec) in patients with malignant gliomas taking enzyme-inducing antiepileptic drugs (EIAED) or not taking EIAED. Phase II: To determine the therapeutic efficacy of imatinib. Experimental Design: Phase I component used an interpatient dose escalation scheme. End points of the phase II component were 6-month progression-free survival and response. Results: Fifty patients enrolled in the phase I component (27 EIAED and 23 non-EIAED). The maximum tolerated dose for non-EIAED patients was 800 mg/d. Dose-limiting toxicities were neutropenia, rash, and elevated alanine aminotransferase. EIAED patients received up to 1,200 mg/d imatinib without developing dose-limiting toxicity. Plasma exposure of imatinib was reduced by ∼68% in EIAED patients compared with non-EIAED patients. Fifty-five non-EIAED patients (34 glioblastoma multiforme and 21 anaplastic glioma) enrolled in the phase II component. Patients initially received 800 mg/d imatinib; 15 anaplastic glioma patients received 600 mg/d after hemorrhages were observed. There were 2 partial response and 6 stable disease among glioblastoma multiforme patients and 0 partial response and 5 stable disease among anaplastic glioma patients. Six-month progression-free survival was 3% for glioblastoma multiforme and 10% for anaplastic glioma patients. Five phase II patients developed intratumoral hemorrhages. Conclusions: Single-agent imatinib has minimal activity in malignant gliomas. CYP3A4 inducers, such as EIAEDs, substantially decreased plasma exposure of imatinib and should be avoided in patients receiving imatinib for chronic myelogenous leukemia and gastrointestinal stromal tumors. The evaluation of the activity of combination regimens incorporating imatinib is under way in phase II trials.


Neuro-oncology | 2008

Progression-free survival: An important end point in evaluating therapy for recurrent high-grade gliomas

Kathleen R. Lamborn; W. K. Alfred Yung; Susan M. Chang; Patrick Y. Wen; Timothy F. Cloughesy; Lisa M. DeAngelis; H. Ian Robins; Frank S. Lieberman; Howard A. Fine; Karen Fink; Larry Junck; Lauren E. Abrey; Mark R. Gilbert; Minesh P. Mehta; John G. Kuhn; Kenneth D. Aldape; Janelle Hibberts; Pamela Peterson; Michael D. Prados

The North American Brain Tumor Consortium (NABTC) uses 6-month progression-free survival (6moPFS) as the efficacy end point of therapy trials for adult patients with recurrent high-grade gliomas. In this study, we investigated whether progression status at 6 months predicts survival from that time, implying the potential for prolonged survival if progression could be delayed. We also evaluated earlier time points to determine whether the time of progression assessment alters the strength of the prediction. Data were from 596 patient enrollments (159 with grade III gliomas and 437 with grade IV tumors) in NABTC phase II protocols between February 1998 and December 2002. Outcome was assessed statistically using Kaplan-Meier curves and Cox proportional hazards models. Median survivals were 39 and 30 weeks for patients with grade III and grade IV tumors, respectively. Twenty-eight percent of patients with grade III and 16% of patients with grade IV tumors had progression-free survival of >26 weeks. Progression status at 9, 18, and 26 weeks predicted survival from those times for patients with grade III or grade IV tumors (p < 0.001 and hazard ratios < 0.5 in all cases). Including KPS, age, number of prior chemotherapies, and response in a multivariate model did not substantively change the results. Progression status at 6 months is a strong predictor of survival, and 6moPFS is a valid end point for trials of therapy for recurrent malignant glioma. Earlier assessments of progression status also predicted survival and may be incorporated in the design of future clinical trials.


Journal of Clinical Oncology | 2002

Survival and Failure Patterns of High-Grade Gliomas After Three-Dimensional Conformal Radiotherapy

June L. Chan; Susan W. Lee; Benedick A. Fraass; Daniel P. Normolle; Harry S. Greenberg; Larry Junck; Stephen S. Gebarski; Howard M. Sandler

PURPOSE The goal of three-dimensional (3-D) conformal radiation is to increase the dose delivered to tumor while minimizing dose to surrounding normal brain. Previously it has been shown that even escalated doses of 70 to 80 Gy have failure patterns that are predominantly local. This article describes the failure patterns and survival seen with high-grade gliomas given 90 Gy using a 3-D conformal intensity-modulated radiation technique. PATIENTS AND METHODS From April 1996 to April 1999, 34 patients with supratentorial high-grade gliomas were treated to 90 Gy. For those that recurred, failure patterns were defined in terms of percentage of recurrent tumor located within the high-dose region. Recurrences with more than 95% of their volume within the high-dose region were considered central; those with 80% to 95%, 20% to 80%, and less than 20% were considered in-field, marginal, and distant, respectively. RESULTS The median age was 55 years, and median follow-up was 11.7 months. At time of analysis, 23 (67.6%) of 34 patients had developed radiographic evidence of recurrence. The patterns of failure were 18 (78%) of 23 central, three (13%) of 23 in-field, two (9%) of 23 marginal, and zero (0%) of 23 distant. The median survival was 11.7 months, with 1-year survival of 47.1% and 2-year survival of 12.9%. No significant treatment toxicities were observed. CONCLUSION Despite dose escalation to 90 Gy, the predominant failure pattern in high-grade gliomas remains local. This suggests that close margins used in highly conformal treatments do not increase the risk of marginal or distant recurrences. Our results indicate that intensification of local radiotherapy with dose escalation is feasible and deserves further evaluation for high-grade gliomas.


Journal of The National Comprehensive Cancer Network | 2011

Central Nervous System Cancers

Steven Brem; Philip J. Bierman; Henry Brem; Nicholas Butowski; Marc C. Chamberlain; Ennio A. Chiocca; Lisa M. DeAngelis; Robert A. Fenstermaker; Allan H. Friedman; Mark R. Gilbert; Deneen Hesser; Larry Junck; Gerald P. Linette; Jay S. Loeffler; Moshe H. Maor; Madison Michael; Paul L. Moots; Tara Morrison; Maciej M. Mrugala; Louis B. Nabors; Herbert B. Newton; Jana Portnow; Jeffrey Raizer; Lawrence Recht; Dennis C. Shrieve; Allen K. Sills; Frank D. Vrionis; Patrick Y. Wen

Primary and metastatic tumors of the central nervous system are a heterogeneous group of neoplasms with varied outcomes and management strategies. Recently, improved survival observed in 2 randomized clinical trials established combined chemotherapy and radiation as the new standard for treating patients with pure or mixed anaplastic oligodendroglioma harboring the 1p/19q codeletion. For metastatic disease, increasing evidence supports the efficacy of stereotactic radiosurgery in treating patients with multiple metastatic lesions but low overall tumor volume. These guidelines provide recommendations on the diagnosis and management of this group of diseases based on clinical evidence and panel consensus. This version includes expert advice on the management of low-grade infiltrative astrocytomas, oligodendrogliomas, anaplastic gliomas, glioblastomas, medulloblastomas, supratentorial primitive neuroectodermal tumors, and brain metastases. The full online version, available at NCCN. org, contains recommendations on additional subtypes.


Lancet Oncology | 2011

Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas

M. J. van den Bent; J.S. Wefel; David Schiff; M. J. B. Taphoorn; Kurt A. Jaeckle; Larry Junck; Terri S. Armstrong; A. Choucair; Ad Waldman; Thierry Gorlia; Marc C. Chamberlain; Brigitta G. Baumert; Michael A. Vogelbaum; David R. Macdonald; David A. Reardon; Patrick Y. Wen; Susan Marina Chang; Andreas H. Jacobs

Although low-grade gliomas (LGG) have a less aggressive course than do high-grade gliomas, the outcome of these tumours is ultimately fatal in most patients. Both the tumour and its treatment can cause disabling morbidity, particularly of cognitive functions. Because many patients present with seizures only, with no other signs and symptoms, maintenance of quality of life and function constitutes a particular challenge in LGG. The slow growth pattern of most LGG, and the rare radiological true responses despite a favourable clinical response to treatment, interferes with the use of progression-free survival as the primary endpoint in trials. Overall survival as an endpoint brings logistical challenges, and is sensitive to other non-investigational salvage therapies. Clinical trials for LGG need to consider other measures of patient benefit such as cognition, symptom burden, and seizure activity, to establish whether improved survival is reflected in prolonged wellbeing. This Review investigates clinical and imaging endpoints in trials of LGG, and provides response assessment in neuro-oncology (RANO) criteria for non-enhancing tumours. Additionally, other measures for patients with brain tumours that assess outcome are described. Similar considerations are relevant for trials of high-grade gliomas, although for these tumours survival is shorter and survival endpoints generally have more value than they do for LGG.


Neuro-oncology | 2004

A phase 2 trial of irinotecan (CPT-11) in patients with recurrent malignant glioma: a North American Brain Tumor Consortium study.

Michael D. Prados; Kathleen R. Lamborn; W. A. Yung; Kurt A. Jaeckle; H. Ian Robins; Minesh P. Mehta; Howard A. Fine; Patrick Y. Wen; Timothy F. Cloughesy; Susan M. Chang; M. Kelly Nicholas; David Schiff; Harry S. Greenberg; Larry Junck; Karen Fink; Ken Hess; John G. Kuhn

The purpose of this study was to determine the response to CPT-11 administered every three weeks to adults with progressive malignant glioma, treated with or without enzyme-inducing antiepileptic drug (EIAED) therapy, at the recommended phase 2 dose determined from a previous phase 1 study. Adult patients age 18 or older with a KPS of 60 or higher who had measurable recurrent grade III anaplastic glioma (AG) or grade IV glioblastoma multiforme (GBM) were eligible. No more than one prior chemotherapy was allowed, either as adjuvant therapy or for recurrent disease. The CPT-11 dose was 350 mg/m(2) i.v. every three weeks in patients not on EIAED and 750 mg/m(2) in patients on EIAED therapy. Patients with stable or responding disease could be treated until tumor progression or a total of 12 months of therapy. The primary end point of the study was to determine whether CPT-11 could significantly delay tumor progression, using the rate of six-month progression-free survival (PFS-6). The trial was sized to be able to discriminate between a 15% and 35% rate for the GBM group alone and between a 20% and 40% rate for the entire cohort. There were 51 eligible patients, including 38 GBM and 13 AG patients, enrolled. The median age was 52 and 42 years, respectively. PFS-6 for the entire cohort was 17.6%. PFS-6 was 15.7% (95% confidence interval [CI], 0.07-0.31) for the GBM patients and 23% (95% CI, 0.07-0.52) for AG patients. Toxicity for the group included diarrhea and myelosuppression. We conclude that the recommended phase 2 dose of CPT-11 for patients with or without EIAED was ineffective on this schedule, in this patient population.


Journal of Clinical Oncology | 2008

Functional diffusion map as an early imaging biomarker for high-grade glioma: correlation with conventional radiologic response and overall survival.

Daniel A. Hamstra; Craig J. Galbán; Charles R. Meyer; Timothy D. Johnson; Pia C. Sundgren; Christina Tsien; Theodore S. Lawrence; Larry Junck; David J. Ross; Alnawaz Rehemtulla; Brian D. Ross; Thomas L. Chenevert

PURPOSE Assessment of radiologic response (RR) for brain tumors utilizes the Macdonald criteria 8 to 10 weeks from the start of treatment. Diffusion magnetic resonance imaging (MRI) using a functional diffusion map (fDM) may provide an earlier measure to predict patient survival. PATIENTS AND METHODS Sixty patients with high-grade glioma were enrolled onto a study of intratreatment MRI at 1, 3, and 10 weeks. Receiver operating characteristic curve analysis was used to evaluate imaging parameters as a function of patient survival at 1 year. Both log-rank and Cox proportional hazards models were utilized to assess overall survival. RESULTS Greater increases in diffusion in response to therapy over time were observed in those patients alive at 1 year compared with those who died as a result of disease. The volume of tumor with increased diffusion by fDM at 3 weeks was the strongest predictor of patient survival at 1 year, with larger fDM predicting longer median survival (52.6 v 10.9 months; log-rank, P < .003; hazard ratio [HR] = 2.7; 95% CI, 1.5 to 5.9). Radiologic response at 10 weeks had similar prognostic value (median survival, 31.6 v 10.9 months; log-rank P < .0007; HR = 2.9; 95% CI, 1.7 to 7.2). Radiologic response and fDM differed in 25% of cases. A composite index of response including fDM and RR provided a robust predictor of patient survival and may identify patients in whom RR does not correlate with clinical outcome. CONCLUSION Compared with conventional neuroimaging, fDM provided an earlier assessment of equal predictive value, and the combination of fDM and RR provided a more accurate prediction of patient survival than either metric alone.


American Journal of Roentgenology | 2005

Differentiation Between Brain Tumor Recurrence and Radiation Injury Using MR Spectroscopy

Patrick Weybright; Pia C. Sundgren; Pavel Maly; Diana Gomez Hassan; Bin Nan; Suzan Rohrer; Larry Junck

OBJECTIVE The purpose of our study was to explore the feasibility and utility of 2D chemical shift imaging (CSI) MR spectroscopy in the evaluation of new areas of contrast enhancement at the site of a previously treated brain neoplasm. MATERIALS AND METHODS Two-dimensional CSI (point-resolved spectroscopy sequence [PRESS]; TR/TE, 1,500/144) was performed in 29 consecutive patients (4-54 years old; mean age, 34 years) who had a new contrast-enhancing lesion in the vicinity of a previously diagnosed and treated brain neoplasm. Clinical and imaging follow-up, and histopathology in 16 patients, were used as indicators of the identity of a lesion. RESULTS Diagnostic-quality spectra were obtained in 97% of the patients. The Cho/Cr (choline/creatine) and Cho/NAA (choline/N-acetyl aspartate) ratios were significantly higher, and the NAA/Cr ratios significantly lower, in tumor than in radiation injury (all three differences, p < 0.0001). The Cho/Cr and Cho/NAA ratios were significantly higher in radiation injury than in normal-appearing white matter (p < 0.0003 and p < 0.0001, respectively), whereas NAA/Cr ratios were not different (p = 0.075). Mean Cho/Cr ratios were 2.52 for tumor, 1.57 for radiation injury, and 1.14 for normal-appearing white matter. Mean Cho/NAA ratios were 3.48, 1.31, 0.79, and mean NAA/Cr ratios were 0.79, 1.22, and 1.38, respectively. When values greater than 1.8 for either Cho/Cr or Cho/NAA ratios were considered evidence of tumor, 27 of 28 patients could be correctly classified. CONCLUSION Two-dimensional CSI MR spectroscopy can differentiate tumor from radiation injury in patients with recurrent contrast-enhancing intracranial lesions. In these lesions, the Cho/NAA and Cho/Cr ratios may be the best numeric discriminators.


Nature Medicine | 2009

The parametric response map is an imaging biomarker for early cancer treatment outcome

Craig J. Galbán; Thomas L. Chenevert; Charles R. Meyer; Christina Tsien; Theodore S. Lawrence; Daniel A. Hamstra; Larry Junck; Pia C. Sundgren; Timothy D. Johnson; David J. Ross; Alnawaz Rehemtulla; Brian D. Ross

Here we describe the parametric response map (PRM), a voxel-wise approach for image analysis and quantification of hemodynamic alterations during treatment for 44 patients with high-grade glioma. Relative cerebral blood volume (rCBV) and flow (rCBF) maps were acquired before treatment and after 1 and 3 weeks of therapy. We compared the standard approach using region-of-interest analysis for change in rCBV or rCBF to the change in perfusion parameters on the basis of PRM (PRMrCBV and PRMrCBF) for their accuracy in predicting overall survival. Neither the percentage change of rCBV or rCBF predicted survival, whereas the regional response evaluations made on the basis of PRM were highly predictive of survival. Even when accounting for baseline rCBV, which is prognostic, PRMrCBV proved more predictive of overall survival.


Journal of Clinical Oncology | 2010

Parametric Response Map As an Imaging Biomarker to Distinguish Progression From Pseudoprogression in High-Grade Glioma

Christina Tsien; Craig J. Galbán; Thomas L. Chenevert; Timothy D. Johnson; Daniel A. Hamstra; Pia C. Sundgren; Larry Junck; Charles R. Meyer; Alnawaz Rehemtulla; Theodore S. Lawrence; Brian D. Ross

PURPOSE To assess whether a new method of quantifying therapy-associated hemodynamic alterations may help to distinguish pseudoprogression from true progression in patients with high-grade glioma. PATIENTS AND METHODS Patients with high-grade glioma received concurrent chemoradiotherapy. Relative cerebral blood volume (rCBV) and blood flow (rCBF) maps were acquired before chemoradiotherapy and at week 3 during treatment on a prospective institutional review board-approved study. Pseudoprogression was defined as imaging changes 1 to 3 months after chemoradiotherapy that mimic tumor progression but stabilized or improved without change in treatment or for which resection revealed radiation effects only. Clinical and conventional magnetic resonance (MR) parameters, including average percent change of rCBV and CBF, were evaluated as potential predictors of pseudoprogression. Parametric response map (PRM), an innovative, voxel-by-voxel method of image analysis, was also performed. RESULTS Median radiation dose was 72 Gy (range, 60 to 78 Gy). Of 27 patients, stable disease/partial response was noted in 13 patients and apparent progression was noted in 14 patients. Adjuvant temozolomide was continued in all patients. Pseudoprogression occurred in six patients. Based on PRM analysis, a significantly reduced blood volume (PRM(rCBV)) at week 3 was noted in patients with progressive disease as compared with those with pseudoprogression (P < .01). In contrast, change in average percent rCBV or rCBF, MR tumor volume changes, age, extent of resection, and Radiation Therapy Oncology Group recursive partitioning analysis classification did not distinguish progression from pseudoprogression. CONCLUSION PRM(rCBV) at week 3 during chemoradiotherapy is a potential early imaging biomarker of response that may be helpful in distinguishing pseudoprogression from true progression in patients with high-grade glioma.

Collaboration


Dive into the Larry Junck's collaboration.

Top Co-Authors

Avatar

Christina Tsien

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yue Cao

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge