Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larry Park is active.

Publication


Featured researches published by Larry Park.


Neurobiology of Disease | 2009

Systematic behavioral evaluation of Huntington’s disease transgenic and knock-in mouse models

Liliana Menalled; Bassem F. El-Khodor; Monica Patry; Mayte Suárez-Fariñas; Samantha J. Orenstein; Benjamin Zahasky; Christina Leahy; Vanessa C. Wheeler; X. William Yang; Marcy E. MacDonald; A. Jennifer Morton; Gill P. Bates; Janet M. Leeds; Larry Park; David Howland; Ethan Signer; Allan J. Tobin; Daniela Brunner

Huntingtons disease (HD) is one of the few neurodegenerative diseases with a known genetic cause, knowledge that has enabled the creation of animal models using genetic manipulations that aim to recapitulate HD pathology. The study of behavioral and neuropathological phenotypes of these HD models, however, has been plagued by inconsistent results across laboratories stemming from the lack of standardized husbandry and testing conditions, in addition to the intrinsic differences between the models. We have compared different HD models using standardized conditions to identify the most robust phenotypic differences, best suited for preclinical therapeutic efficacy studies. With a battery of tests of sensory-motor function, such as the open field and prepulse inhibition tests, we replicate previous results showing a strong and progressive behavioral deficit in the R6/2 line with an average of 129 CAG repeats in a mixed CBA/J and C57BL/6J background. We present the first behavioral characterization of a new model, an R6/2 line with an average of 248 CAG repeats in a pure C57BL/6J background, which also showed a progressive and robust phenotype. The BACHD in a FVB/N background showed robust and progressive behavioral phenotype, while the YAC128 full-length model on either an FVB/N or a C57BL/6J background generally showed milder deficits. Finally, the Hdh(Q111) knock-in mouse on a CD1 background showed very mild deficits. This first extensive standardized cross-characterization of several HD animal models under standardized conditions highlights several behavioral outcomes, such as hypoactivity, amenable to standardized preclinical therapeutic drug screening.


Molecular Brain Research | 1999

Cultures of astrocytes and microglia express interleukin 18

Bruno Conti; Larry Park; Noel Y. Calingasan; Yoon-Seong Kim; Hocheol Kim; Youngmee Bae; Gary E. Gibson; Tong H. Joh

Interleukin 18 (IL-18 or interferon-gamma inducing factor) is a recently discovered pro-inflammatory cytokine and powerful stimulator of the cell-mediated immune response. IL-18 is produced by several sources including monocytes/macrophages, keratinocytes and the zona reticularis and zona fasciculata of the adrenal cortex. IL-18 occurs in brain but its cellular source in the CNS has never been investigated. The presence of IL-18 and its response to stimulation in the brain was tested with primary cultures of microglia, astrocytes and hippocampal neurons. IL-18 mRNA was present in astrocytes and microglia, but not in neurons. The endotoxin lipopolysaccharide (LPS) did not affect IL-18 in astrocytes, but LPS robustly increased IL-18 mRNA in microglia. IL-18 protein was constitutively expressed in astrocytes and induced in microglia by LPS. The levels of interleukin-1beta converting enzyme (ICE), an activating enzyme, and caspase 3 (CPP32), an inactivating enzyme, were assessed to investigate the presence of the appropriate processing enzymes in the cultured cells. ICE was present at constitutive levels in microglia and astrocytes suggesting that these cell types may produce and secrete matured IL-18. Active forms of CPP32 were not detectable in either cell type indicating the absence of a degradative pathway of IL-18. The present results demonstrate that microglia and astrocytes are sources of brain IL-18 and add a new member to the family of cytokines produced in the brain.


Neurochemistry International | 2000

The α-ketoglutarate dehydrogenase complex in neurodegeneration

Gary E. Gibson; Larry Park; Kwan-Fu Rex Sheu; John P. Blass; Noel Y. Calingasan

Altered energy metabolism is characteristic of many neurodegenerative disorders. Reductions in the key mitochondrial enzyme complex, the alpha-ketoglutarate dehydrogenase complex (KGDHC), occur in a number of neurodegenerative disorders including Alzheimers Disease (AD). The reductions in KGDHC activity may be responsible for the decreases in brain metabolism, which occur in these disorders. KGDHC can be inactivated by several mechanisms, including the actions of free radicals (Reactive Oxygen Species, ROS). Other studies have associated specific forms of one of the genes encoding KGDHC (namely the DLST gene) with AD, Parkinsons disease, as well as other neurodegenerative diseases. Reductions in KGDHC activity can be plausibly linked to several aspects of brain dysfunction and neuropathology in a number of neurodegenerative diseases. Further studies are needed to assess mechanisms underlying the sensitivity of KGDHC to oxidative stress and the relation of KGDHC deficiency to selective vulnerability in neurodegenerative diseases.


Annals of Neurology | 2000

Mitochondrial damage in Alzheimer's disease varies with apolipoprotein E genotype

Gary E. Gibson; Vahram Haroutunian; Hui Zhang; Larry Park; Qingli Shi; M. Lesser; Richard C. Mohs; R. K-F. Sheu; John P. Blass

Brain metabolism and the activity of the α‐ketoglutarate dehydrogenase complex (KGDHC), a mitochondrial enzyme, are diminished in brains from patients with Alzheimers disease (AD). In 109 subjects, the Clinical Dementia Rating (CDR) score was highly correlated with brain KGDHC activity. In AD patients who carried the epsilon 4 allele of the apolipoprotein E gene (ApoE4), the CDR score correlated better with KGDHC activity than with the densities of neuritic plaques or neuritic tangles. In contrast, in patients without ApoE4, the CDR score correlated significantly better with tangles and plaques than with KGDHC activity. The results suggest that mitochondrial/oxidative damage may be more important for the cognitive dysfunction in AD patients who carry ApoE4 than in those who do not. Ann Neurol 2000;48:297–303


Journal of Neurochemistry | 2008

Metabolic Impairment Induces Oxidative Stress, Compromises Inflammatory Responses, and Inactivates a Key Mitochondrial Enzyme in Microglia

Larry Park; Hui Zhang; Kwan-Fu Rex Sheu; Noel Y. Calingasan; Bruce S. Kristal; J. Gordon Lindsay; Gary E. Gibson

Abstract: Microglial activation, oxidative stress, and dysfunctions in mitochondria, including the reduction of cytochrome oxidase activity, have been implicated in neurodegeneration. The current experiments tested the effects of reducing cytochrome oxidase activity on the ability of microglia to respond to inflammatory insults. Inhibition of cytochrome oxidase by azide reduced oxygen consumption and increased reactive oxygen species (ROS) production but did not affect cell viability. Azide also attenuated microglial activation, as measured by nitric oxide (NO*) production in response to lipopolysaccharide (LPS). It is surprising that the inhibition of cytochrome oxidase also diminished the activity of the α‐ketoglutarate dehydrogenase complex (KGDHC), a Krebs cycle enzyme. This reduction was exaggerated when the azide‐treated microglia were also treated with LPS. The combination of the azide‐stimulated ROS and LPS‐induced NO* would likely cause peroxynitrite formation in microglia. Thus, the possibility that KGDHC was inactivated by peroxynitrite was tested. Peroxynitrite inhibited the activity of isolated KGDHC, nitrated tyrosine residues of all three KGDHC subunits, and reduced immunoreactivity to antibodies against two KGDHC components. Thus, our data suggest that inhibition of the mitochondrial respiratory chain diminishes aerobic energy metabolism, interferes with microglial inflammatory responses, and compromises mitochondrial function, including KGDHC activity, which is vulnerable to NO* and peroxynitrite that result from microglial activation. Thus, activation of metabolically compromised microglia can further diminish their oxidative capacity, creating a deleterious spiral that may contribute to neurodegeneration.


PLOS ONE | 2012

Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington's disease: zQ175.

Liliana Menalled; Andrea E. Kudwa; Samuel I. Miller; Jon Fitzpatrick; Judy Watson-Johnson; Nicole Keating; Melinda Ruiz; Richard Mushlin; William Alosio; Kristi McConnell; David H. O’Connor; Carol Murphy; Steve Oakeshott; Mei Kwan; José Pío Beltrán; Afshin Ghavami; Dani Brunner; Larry Park; Sylvie Ramboz; David Howland

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive and psychiatric manifestations. Since the mutation responsible for the disease was identified as an unstable expansion of CAG repeats in the gene encoding the huntingtin protein in 1993, numerous mouse models of HD have been generated to study disease pathogenesis and evaluate potential therapeutic approaches. Of these, knock-in models best mimic the human condition from a genetic perspective since they express the mutation in the appropriate genetic and protein context. Behaviorally, however, while some abnormal phenotypes have been detected in knock-in mouse models, a model with an earlier and more robust phenotype than the existing models is required. We describe here for the first time a new mouse line, the zQ175 knock-in mouse, derived from a spontaneous expansion of the CAG copy number in our CAG 140 knock-in colony [1]. Given the inverse relationship typically observed between age of HD onset and length of CAG repeat, since this new mouse line carries a significantly higher CAG repeat length it was expected to be more significantly impaired than the parent line. Using a battery of behavioral tests we evaluated both heterozygous and homozygous zQ175 mice. Homozygous mice showed motor and grip strength abnormalities with an early onset (8 and 4 weeks of age, respectively), which were followed by deficits in rotarod and climbing activity at 30 weeks of age and by cognitive deficits at around 1 year of age. Of particular interest for translational work, we also found clear behavioral deficits in heterozygous mice from around 4.5 months of age, especially in the dark phase of the diurnal cycle. Decreased body weight was observed in both heterozygotes and homozygotes, along with significantly reduced survival in the homozygotes. In addition, we detected an early and significant decrease of striatal gene markers from 12 weeks of age. These data suggest that the zQ175 knock-in line could be a suitable model for the evaluation of therapeutic approaches and early events in the pathogenesis of HD.


Journal of Neuropathology and Experimental Neurology | 1999

Oxidative stress is associated with region-specific neuronal death during thiamine deficiency.

Noel Y. Calingasan; William J. Chun; Larry Park; Koji Uchida; Gary E. Gibson

Thiamine deficiency (TD) is a model of chronic impairment of oxidative metabolism and selective neuronal loss. TD leads to region-specific neuronal death and elevation of inducible nitric oxide synthase (iNOS) in macrophages/microglia in mouse brain. Identification of the initial site of neuronal death in the submedial thalamic nucleus allowed us to test the role of iNOS and oxidative stress in TD-induced neuronal death. The pattern of neuronal loss, which begins after 9 days of TD, overlapped with induction of the oxidative stress marker heme oxygenase-1 (HO-1) in microglia. Neuronal death and microglial HO-1 induction spread to engulf the whole thalamus after 11 days of TD. As in past studies, reactive iron and ferritin accumulated in microglia beginning on day 10. The lipid peroxidation product, 4-hydroxynonenal (HNE) accumulated in the remaining thalamic neurons only after 11 days of TD. These responses were not likely mediated by iNOS because HO-1 induction and HNE accumulation were comparable in iNOS knockout mice and wild-type controls. These results show that region and cell specific oxidative stress is associated with selective neurodegeneration during TD. Thus, TD is a useful model to help elucidate neuron-microglial interaction in neurodegenerative diseases associated with oxidative stress.


Journal of Neurochemistry | 2001

Frontal lobe dysfunction in progressive supranuclear palsy: evidence for oxidative stress and mitochondrial impairment.

David S. Albers; Sarah J. Augood; Larry Park; Susan E. Browne; Debroah M. Martin; Jennifer Adamson; Mike Hutton; David G. Standaert; Jean-Paul Vonsattel; Gary E. Gibson; M. Flint Beal

Abstract: Recent data from our laboratory have shown a regionally specific increase in lipid peroxidation in postmortem progressive supranuclear palsy (PSP) brain. To extend this finding, we measured activities of mitochondrial enzymes as well as tissue malondialdehyde (MDA) levels in postmortem superior frontal cortex (Brodmann’s area 9; SFC) from 14 pathologically confirmed cases of PSP and 13 age‐matched control brains. Significant decreases (‐39%) in α‐ketoglutarate dehydrogenase complex/glutamate dehydrogenase ratio and significant increases (+36%) in tissue MDA levels were observed in the SFC in PSP; no differences in complex I or complex IV activities were detected. Together, these results suggest that mitochondrial dysfunction and lipid peroxidation may underlie the frontal metabolic and functional deficits observed in PSP.


American Journal of Pathology | 1998

Induction of nitric oxide synthase and microglial responses precede selective cell death induced by chronic impairment of oxidative metabolism

Noel Y. Calingasan; Larry Park; Leonard L. Calo; Rosario R. Trifiletti; Samuel E. Gandy; Gary E. Gibson

Abnormal oxidative processes including a reduction in thiamine-dependent enzymes accompany many neurodegenerative diseases. Thiamine deficiency (TD) models the cellular and molecular mechanisms by which chronic oxidative aberrations associated with thiamine-dependent enzyme deficits cause selective neurodegeneration. The mechanisms underlying selective cell death in TD are unknown. In rodent TD, the earliest region-specific pathological change is breakdown of the blood-brain barrier (BBB). The current studies tested whether nitric oxide and microglia are important in the initial events that couple BBB breakdown to selective neuronal loss. Enhanced expression of endothelial nitric oxide synthase and nicotinamide adenine dinucleotide phosphate diaphorase reactivity in microvessels, as well as the presence of numerous inducible nitric oxide synthase-immunoreactive microglia, accompanied the increases in BBB permeability. Nitric oxide synthase induction appears critical to TD pathology, because immunoreactivity for nitrotyrosine, a specific nitration product of peroxynitrite, also increased in axons of susceptible regions. In addition, TD elevated iron and the antioxidant protein ferritin in microvessels and in activated microglia, suggesting that these cells are responding to an oxidative challenge. All of these changes occurred in selectively vulnerable regions, preceding neuronal death. These findings are consistent with the hypothesis that the free radical-mediated BBB alterations permit entry of iron and extraneuronal proteins that set in motion a cascade of inflammatory responses culminating in selective neuronal loss. Thus, the TD model should help elucidate the relationship between oxidative deficits, BBB abnormalities, the inflammatory response, ferritin and iron elevation, and selective neurodegeneration.


PLOS ONE | 2012

Characterization of Neurophysiological and Behavioral Changes, MRI Brain Volumetry and 1H MRS in zQ175 Knock-In Mouse Model of Huntington's Disease

Taneli Heikkinen; Kimmo Lehtimäki; Nina Vartiainen; Jukka Puoliväli; Susan J. Hendricks; Jack R. Glaser; Amyaouch Bradaia; Kristian Wadel; Outi Kontkanen; Juha Yrjänheikki; Bruno Buisson; David Howland; Vahri Beaumont; Ignacio Munoz-Sanjuan; Larry Park

Huntingtons disease (HD) is an autosomal neurodegenerative disorder, characterized by severe behavioral, cognitive, and motor deficits. Since the discovery of the huntingtin gene (HTT) mutation that causes the disease, several mouse lines have been developed using different gene constructs of Htt. Recently, a new model, the zQ175 knock-in (KI) mouse, was developed (see description by Menalled et al, [1]) in an attempt to have the Htt gene in a context and causing a phenotype that more closely mimics HD in humans. Here we confirm the behavioral phenotypes reported by Menalled et al [1], and extend the characterization to include brain volumetry, striatal metabolite concentration, and early neurophysiological changes. The overall reproducibility of the behavioral phenotype across the two independent laboratories demonstrates the utility of this new model. Further, important features reminiscent of human HD pathology are observed in zQ175 mice: compared to wild-type neurons, electrophysiological recordings from acute brain slices reveal that medium spiny neurons from zQ175 mice display a progressive hyperexcitability; glutamatergic transmission in the striatum is severely attenuated; decreased striatal and cortical volumes from 3 and 4 months of age in homo- and heterozygous mice, respectively, with whole brain volumes only decreased in homozygotes. MR spectroscopy reveals decreased concentrations of N-acetylaspartate and increased concentrations of glutamine, taurine and creatine + phosphocreatine in the striatum of 12-month old homozygotes, the latter also measured in 12-month-old heterozygotes. Motor, behavioral, and cognitive deficits in homozygotes occur concurrently with the structural and metabolic changes observed. In sum, the zQ175 KI model has robust behavioral, electrophysiological, and histopathological features that may be valuable in both furthering our understanding of HD-like pathophyisology and the evaluation of potential therapeutic strategies to slow the progression of disease.

Collaboration


Dive into the Larry Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimmo Lehtimäki

Charles River Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge