Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Larry W. Thomason is active.

Publication


Featured researches published by Larry W. Thomason.


Journal of Geophysical Research | 1996

The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes

Sean C. Solomon; Robert W. Portmann; Rolando R. Garcia; Larry W. Thomason; Lamont R. Poole; M. P. McCormick

Aerosol surface area distributions inferred from satelliteborne 1-μm extinction measurements are used as input to a two-dimensional model to study the effects of heterogeneous chemistry upon anthropogenic ozone depletion at northern midlatitudes. It is shown that short-term (interannual) and longer-term (decadal) changes in aerosols very likely played a substantial role along with trends in anthropogenic chlorine and bromine in both triggering the ozone losses observed at northern midlatitudes in the early 1980s and increasing the averaged long-term ozone depletions of the past decade or so. The use of observed aerosol distributions enhances the calculated ozone depletion due to halogen chemistry below about 25 km over much of the past decade, including many periods not generally thought to be affected by volcanic activity. Direct observations (especially the relationships of NO X /NO Y and ClO/Cl y ratios to aerosol content) confirm the key aspects of the model chemistry that is responsible for this behavior and demonstrate that aerosol changes alone are not a mechanism for ozone losses in the absence of anthropogenic halogen inputs to the stratosphere. It is also suggested that aerosol-induced ozone changes could be confused with 11-year solar cycle effects in some statistical analyses, resulting in an overestimate of the trends ascribed to solar activity. While the timing of the observed ozone changes over about the past 15 years is in remarkable agreement with the model predictions that explicitly include observed aerosol changes, their magnitude is about 50% larger than calculated. Possible chemical and dynamical causes of this discrepancy are explored. On the basis of this work, it is shown that the timing and magnitude of future ozone losses at midlatitudes in the northern hemisphere are likely to be strongly dependent upon volcanic aerosol variations as well as on future chlorine and bromine loading.


Science | 2011

The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change

Susan Solomon; John S. Daniel; Ryan R. Neely; Jean-Paul Vernier; Ellsworth G. Dutton; Larry W. Thomason

An increase in the amount of aerosols in the stratosphere during the past decade has decreased the rate of global warming. Recent measurements demonstrate that the “background” stratospheric aerosol layer is persistently variable rather than constant, even in the absence of major volcanic eruptions. Several independent data sets show that stratospheric aerosols have increased in abundance since 2000. Near-global satellite aerosol data imply a negative radiative forcing due to stratospheric aerosol changes over this period of about –0.1 watt per square meter, reducing the recent global warming that would otherwise have occurred. Observations from earlier periods are limited but suggest an additional negative radiative forcing of about –0.1 watt per square meter from 1960 to 1990. Climate model projections neglecting these changes would continue to overestimate the radiative forcing and global warming in coming decades if these aerosols remain present at current values or increase.


Journal of Geophysical Research | 2002

Climate forcings in Goddard Institute for Space Studies SI2000 simulations

James E. Hansen; Makiko Sato; Larissa Nazarenko; Reto Ruedy; A. Lacis; D. Koch; Ina Tegen; Timothy M. Hall; Drew T. Shindell; B. D. Santer; Peter H. Stone; T. Novakov; Larry W. Thomason; R. H. J. Wang; Yuhang Wang; Daniel J. Jacob; S. M. Hollandsworth; L. Bishop; Jennifer A. Logan; Anne M. Thompson; Richard S. Stolarski; Judith Lean; R. Willson; Sydney Levitus; John I. Antonov; Nick Rayner; D. E. Parker; John R. Christy

[1] We define the radiative forcings used in climate simulations with the SI2000 version of the Goddard Institute for Space Studies (GISS) global climate model. These include temporal variations of well-mixed greenhouse gases, stratospheric aerosols, solar irradiance, ozone, stratospheric water vapor, and tropospheric aerosols. Our illustrations focus on the period 1951–2050, but we make the full data sets available for those forcings for which we have earlier data. We illustrate the global response to these forcings for the SI2000 model with specified sea surface temperature and with a simple Q-flux ocean, thus helping to characterize the efficacy of each forcing. The model yields good agreement with observed global temperature change and heat storage in the ocean. This agreement does not yield an improved assessment of climate sensitivity or a confirmation of the net climate forcing because of possible compensations with opposite changes of these quantities. Nevertheless, the results imply that observed global temperature change during the past 50 years is primarily a response to radiative forcings. It is also inferred that the planet is now out of radiation balance by 0.5 to 1 W/m 2 and that additional global warming of about 0.5� C is already ‘‘in the pipeline.’’ INDEX TERMS: 1620 Global Change: Climate dynamics (3309); 1635 Global Change: Oceans (4203); 1650 Global Change: Solar variability;


Journal of Geophysical Research | 1998

Radiative forcing from the 1991 Mount Pinatubo volcanic eruption

Georgiy L. Stenchikov; Ingo Kirchner; Alan Robock; Hans-F. Graf; Juan Carlos Antuña; R. G. Grainger; Alyn Lambert; Larry W. Thomason

Volcanic sulfate aerosols in the stratosphere produce significant long-term solar and infrared radiative perturbations in the Earths atmosphere and at the surface, which cause a response of the climate system. Here we study the fundamental process of the development of this volcanic radiative forcing, focusing on the eruption of Mount Pinatubo in the Philippines on June 15, 1991. We develop a spectral-, space-, and time-dependent set of aerosol parameters for 2 years after the Pinatubo eruption using a combination of SAGE II aerosol extinctions and UARS-retrieved effective radii, supported by SAM II, AVHRR, lidar and balloon observations. Using these data, we calculate the aerosol radiative forcing with the ECHAM4 general circulation model (GCM) for cases with climatological and observed sea surface temperature (SST), as well as with and without climate response. We find that the aerosol radiative forcing is not sensitive to the climate variations caused by SST or the atmospheric response to the aerosols, except in regions with varying dense cloudiness. The solar forcing in the near infrared contributes substantially to the total stratospheric heating. A complete formulation of radiative forcing should include not only changes of net fluxes at the tropopause but also the vertical distribution of atmospheric heating rates and the change of downward thermal and net solar radiative fluxes at the surface. These forcing and aerosol data are available for GCM experiments with any spatial and spectral resolution.


Journal of Geophysical Research | 1997

A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984–1994

Larry W. Thomason; Lamont R. Poole; Terry Deshler

A global climatology of stratospheric aerosol surface area density has been developed using the multiwavelength aerosol extinction measurements of the Stratospheric Aerosol and Gas Experiment (SAGE) II for 1984–1994. The spatial and temporal variability of aerosol surface area density at 15.5, 20.5, and 25.5 km are presented as well as cumulative statistical distributions as a function of altitude and latitude. During this period, which encompassed the injection and dissipation of the aerosol associated with the June 1991 Mount Pinatubo eruption as well as the low loading period of 1989–1991, aerosol surface area density varied by more than a factor 30 at some altitudes. Aerosol surface area density derived from SAGE II and from the University of Wyoming optical particle counters are compared for 1991–1994 and are shown to be in generally good agreement though some differences are noted. An extension of the climatology using single-wavelength measurements by the Stratospheric Aerosol Measurement II (1978–1994) and SAGE (1979–1981) instruments is also presented.


Journal of Geophysical Research | 1996

Global to Microscale Evolution of the Pinatubo Volcanic Aerosol Derived from Diverse Measurements and Analyses

P. B. Russell; J. M. Livingston; R. F. Pueschel; J. J. Bauman; J. B. Pollack; S. L. Brooks; P. Hamill; Larry W. Thomason; L. L. Stowe; Terry Deshler; Ellsworth G. Dutton; Robert W. Bergstrom

We assemble data on the Pinatubo aerosol from space, air, and ground measurements, develop a composite picture, and assess the consistency and uncertainties of measurement and retrieval techniques. Satellite infrared spectroscopy, particle morphology, and evaporation temperature measurements agree with theoretical calculations in showing a dominant composition of H2SO4-H2O mixture, with H2SO4 weight fraction of 65–80% for most stratospheric temperatures and humidities. Important exceptions are (1) volcanic ash, present at all heights initially and just above the tropopause until at least March 1992, and (2) much smaller H2SO4 fractions at the low temperatures of high-latitude winters and the tropical tropopause. Laboratory spectroscopy and calculations yield wavelength- and temperature-dependent refractive indices for the H2SO4-H2O droplets. These permit derivation of particle size information from measured optical depth spectra, for comparison to impactor and optical-counter measurements. All three techniques paint a generally consistent picture of the evolution of Reff, the effective radius. In the first month after the eruption, although particle numbers increased greatly, Reff outside the tropical core was similar to preeruption values of ∼0.1 to 0.2 μm, because numbers of both small (r 0.6 μm) particles increased. In the next 3–6 months, extracore Reff increased to ∼0.5 μm, reflecting particle growth through condensation and coagulation. Most data show that Reff continued to increase for ∼1 year after the eruption. Reff values up to 0.6–0.8 μm or more are consistent with 0.38–1 μm optical depth spectra in middle to late 1992 and even later. However, in this period, values from in situ measurements are somewhat less. The difference might reflect in situ undersampling of the very few largest particles, insensitivity of optical depth spectra to the smallest particles, or the inability of flat spectra to place an upper limit on particle size. Optical depth spectra extending to wavelengths λ > 1 μm are required to better constrain Reff, especially for Reff > 0.4 μm. Extinction spectra computed from in situ size distributions are consistent with optical depth measurements; both show initial spectra with λmax ≤ 0.42 μm, thereafter increasing to 0.78 ≤ λmax ≤ 1 μm. Not until 1993 do spectra begin to show a clear return to the preemption signature of λmax ≤ 0.42 μm. The twin signatures of large Reff (>0.3 μm) and relatively flat extinction spectra (0.4–1 μm) are among the longest-lived indicators of Pinatubo volcanic influence. They persist for years after the peaks in number, mass, surface area, and optical depth at all wavelengths ≤1 μm. This coupled evolution in particle size distribution and optical depth spectra helps explain the relationship between global maps of 0.5- and 1.0-μm optical depth derived from the Advanced Very High Resolution Radiometer (AVHRR) and Stratospheric Aerosol and Gas Experiment (SAGE) satellite sensors. However, there are important differences between the AVHRR and SAGE midvisible optical thickness products. We discuss possible reasons for these differences and how they might be resolved.


Journal of Geophysical Research | 1997

Forcings and chaos in interannual to decadal climate change

James E. Hansen; Makiko Sato; Reto Ruedy; A. Lacis; K. Asamoah; K. Beckford; S. Borenstein; Erik T. Brown; Brian Cairns; Barbara E. Carlson; B. Curran; S. de Castro; Leonard M. Druyan; P. Etwarrow; T. Ferede; M. Fox; Dian J. Gaffen; J. Glascoe; Howard R. Gordon; S. M. Hollandsworth; X. Jiang; Colin A. Johnson; N. Lawrence; Judith Lean; J. Lerner; K. Lo; Jennifer A. Logan; A. Luckett; M. P. McCormick; Richard D. McPeters

We investigate the roles of climate forcings and chaos (unforced variability) in climate change via ensembles of climate simulations in which we add forcings one by one. The experiments suggest that most interannual climate variability in the period 1979–1996 at middle and high latitudes is chaotic. But observed SST anomalies, which themselves are partly forced and partly chaotic, account for much of the climate variability at low latitudes and a small portion of the variability at high latitudes. Both a natural radiative forcing (volcanic aerosols) and an anthropogenic forcing (ozone depletion) leave clear signatures in the simulated climate change that are identified in observations. Pinatubo aerosols warm the stratosphere and cool the surface globally, causing a tendency for regional surface cooling. Ozone depletion cools the lower stratosphere, troposphere and surface, steepening the temperature lapse rate in the troposphere. Solar irradiance effects are small, but our model is inadequate to fully explore this forcing. Well-mixed anthropogenic greenhouse gases cause a large surface wanning that, over the 17 years, approximately offsets cooling by the other three mechanisms. Thus the net calculated effect of all measured radiative forcings is approximately zero surface temperature trend and zero heat storage in the ocean for the period 1979–1996. Finally, in addition to the four measured radiative forcings, we add an initial (1979) disequilibrium forcing of +0.65 W/m2. This forcing yields a global surface warming of about 0.2°C over 1979–1996, close to observations, and measurable heat storage in the ocean. We argue that the results represent evidence of a planetary radiative imbalance of at least 0.5° W/m2; this disequilibrium presumably represents unrealized wanning due to changes of atmospheric composition prior to 1979. One implication of the disequilibrium forcing is an expectation of new record global temperatures in the next few years. The best opportunity for observational confirmation of the disequilibrium is measurement of ocean temperatures adequate to define heat storage.


Journal of Geophysical Research | 1997

Heterogeneous chlorine chemistry in the tropopause region

Stanley C. Solomon; S. Borrmann; Rolando R. Garcia; Robert W. Portmann; Larry W. Thomason; Lamont R. Poole; D. Winker; M. P. McCormick

Satellite observations of cloud optical depths and occurrence frequencies are used as input to a two-dimensional numerical model of the chemistry and dynamics of the atmosphere to study the effects of heterogeneous reactions on cloud surfaces upon chemical composition and ozone depletion in the tropopause region. Efficient reactions of ClONO2 with HCl and H2O, and of HOCl with HCl, are likely to take place on the surfaces of cirrus clouds [Borrmann et al., 1996] and perturb chlorine chemistry, much as they do on polar stratospheric clouds present at higher altitudes and colder temperatures. Because of the very low predicted background abundances of ClO near the tropopause, such reactions could enhance the local ClO mixing ratios by up to 30-fold at midlatitudes. Substantial perturbations are also predicted for related chemical species (e.g., HCl, HOCl, ClONO2, NO2, HO2) in the midlatitude and tropical tropopause regions due to these heterogeneous reactions. If cirrus clouds occur with sufficient frequency and spatial extent, they could influence not only the chemical composition but also the ozone depletion in the region near the tropopause. Because of variations in observed cloud occurrence frequency and in photochemical and dynamical timescales, the presence of cirrus clouds likely has its largest effect on ozone near the midlatitude tropopause of the northern hemisphere in summer.


Journal of Geophysical Research | 1996

Role of aerosol variations in anthropogenic ozone depletion in the polar regions

Robert W. Portmann; Sean C. Solomon; Rolando R. Garcia; Larry W. Thomason; Lamont R. Poole; M. P. McCormick

A climatology of aerosol surface area inferred from satellite measurements is used as input in a two-dimensional model to study the long-term evolution of polar ozone depletion, especially the Antarctic ozone hole. It is found that volcanic aerosol inputs very likely modulate the severity of the ozone hole. In particular, the rapid deepening of the ozone hole in the early 1980s, as seen, for example, in the Halley Bay total ozone measurements, was probably caused by accelerated heterogeneous chemistry associated with an increase in aerosol surface area due to volcanic injection combined with the anthropogenic perturbation of stratospheric chlorine. This is further substantiated by the large Antarctic ozone decline observed and modeled after the eruption of Mount Pinatubo. A number of factors that influence the ozone hole are also investigated, including the effect of liquid versus frozen aerosol, the effects of denitrification and dehydration, the role of HO x in HCl and ClONO 2 recovery, and the effect of chlorine partitioning at the start of winter. Denitrification tends to slightly increase modeled ozone loss, primarily between about 17 and 25 km late in the season, while dehydration tends to decrease the amount of ozone depletion. However, temperature and aerosol amount have the strongest control on the model ozone loss for a given chlorine loading. These findings suggest that future Arctic ozone depletion could be severe in unusually cold winters or years with large volcanic aerosol surface area.


Geophysical Research Letters | 1998

Ozone depletion at mid-latitudes: Coupling of volcanic aerosols and temperature variability to anthropogenic chlorine

Stanley C. Solomon; Robert W. Portmann; Rolando R. Garcia; William J. Randel; F. Wu; R. Nagatani; James F. Gleason; Larry W. Thomason; Lamont R. Poole; M. P. McCormick

Satellite observations of total ozone at 40–60°N are presented from a variety of instruments over the time period 1979–1997. These reveal record low values in 1992–3 (after Pinatubo) followed by partial but incomplete recovery. The largest post-Pinatubo reductions and longer-term trends occur in spring, providing a critical test for chemical theories of ozone depletion. The observations are shown to be consistent with current understanding of the chemistry of ozone depletion when changes in reactive chlorine and stratospheric aerosol abundances are considered along with estimates of wave-driven fluctuations in stratospheric temperatures derived from global temperature analyses. Temperature fluctuations are shown to make significant contributions to model calculated northern mid-latitude ozone depletion due to heterogeneous chlorine activation on liquid sulfate aerosols at temperatures near 200–210K (depending upon water vapor pressure), particularly after major volcanic eruptions. Future mid-latitude ozone recovery will hence depend not only on chlorine recovery but also on temperature trends and/or variability, volcanic activity, and any trends in stratospheric sulfate aerosol.

Collaboration


Dive into the Larry W. Thomason's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Herber

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles R. Trepte

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Charles Pitts

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge