Larry Yet
University of South Alabama
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Larry Yet.
Tetrahedron | 1999
Larry Yet
Abstract Applications of free radical chemistry in the syntheses of seven- to nine-membered rings are presented in this review.
Bioorganic & Medicinal Chemistry Letters | 2015
Genevieve E. Mullen; Larry Yet
Fatty acid synthase (E.C. 2.3.1.85; FASN) is a multifunctional enzyme system that catalyzes the formation of fatty acids from acetyl-CoA, malonyl-CoA, and NADPH and plays a central role in lipid biosynthesis. Two classes of FASN exist: FASN I in animals and fungi, and FASN II in plants and prokaryotes. Animal FASN I is a homodimeric protein found in the cytosol of lipogenic tissues such as the liver and brain. Many human carcinomas exhibit elevated levels of FASN I, though the benefit to cancer cells is still unclear. Inhibition of FASN I selectively effects apoptosis in cancer cells, and the role of FASN I in chemotherapy is a growing area of research with the use of natural products and small molecule inhibitors.
Tetrahedron Letters | 2003
Robert F. Campbell; Kevin Fitzpatrick; Tord Inghardt; Olle Karlsson; Kristina Nilsson; John Reilly; Larry Yet
Abstract A series of substituted mandelic acids were prepared and subjected to enzymatic resolution utilizing Lipase PS ‘Amano’.
Bioorganic & Medicinal Chemistry Letters | 2010
Jian Liu; Shuwen He; Tianying Jian; Peter H. Dobbelaar; Iyassu K. Sebhat; Linus S. Lin; Allan J. Goodman; Cheng Guo; Peter R. Guzzo; Mark Hadden; Alan J. Henderson; Kevin Pattamana; Megan Ruenz; Bruce J. Sargent; Brian Swenson; Larry Yet; Constantin Tamvakopoulos; Qianping Peng; Jie Pan; Yanqing Kan; Oksana C. Palyha; Theresa M. Kelly; Xiao-Ming Guan; Andrew D. Howard; Donald J. Marsh; Joseph M. Metzger; Marc L. Reitman; Matthew J. Wyvratt; Ravi P. Nargund
This Letter describes a series of potent and selective BRS-3 agonists containing a biarylethylimidazole pharmacophore. Extensive SAR studies were carried out with different aryl substitutions. This work led to the identification of a compound 2-{2-[4-(pyridin-2-yl)phenyl]ethyl}-5-(2,2-dimethylbutyl)-1H-imidazole 9 with excellent binding affinity (IC(50)=18 nM, hBRS-3) and functional agonist activity (EC(50)=47 nM, 99% activation). After oral administration, compound 9 had sufficient exposure in diet induced obese mice to demonstrate efficacy in lowering food intake and body weight via BRS-3 activation.
Oncogene | 2015
Nan Li; Kevin Lee; Yaguang Xi; Bing Zhu; Bernard D. Gary; Veronica Ramirez-Alcantara; Evrim Gurpinar; Joshua C. Canzoneri; Alexandra Fajardo; Sara C. Sigler; John T. Piazza; Xi Chen; Joel Andrews; Meagan Thomas; Wenyan Lu; Yonghe Li; Danuel J. Laan; Mary P. Moyer; Suzanne Russo; Brian T. Eberhardt; Larry Yet; Adam B. Keeton; William E. Grizzle; Gary A. Piazza
The cyclic nucleotide phosphodiesterase 10A (PDE10) has been mostly studied as a therapeutic target for certain psychiatric and neurological conditions, although a potential role in tumorigenesis has not been reported. Here we show that PDE10 is elevated in human colon tumor cell lines compared with normal colonocytes, as well as in colon tumors from human clinical specimens and intestinal tumors from ApcMin/+ mice compared with normal intestinal mucosa, respectively. An isozyme and tumor-selective role of PDE10 were evident by the ability of small-molecule inhibitors and small interfering RNA knockdown to suppress colon tumor cell growth with reduced sensitivity of normal colonocytes. Stable knockdown of PDE10 by short hairpin RNA also inhibits colony formation and increases doubling time of colon tumor cells. PDE10 inhibition selectively activates cGMP/cGMP-dependent protein kinase signaling to suppress β-catenin levels and T-cell factor (TCF) transcriptional activity in colon tumor cells. Conversely, ectopic expression of PDE10 in normal and precancerous colonocytes increases proliferation and activates TCF transcriptional activity. These observations suggest a novel role of PDE10 in colon tumorigenesis and that inhibitors may be useful for the treatment or prevention of colorectal cancer.
Bioorganic & Medicinal Chemistry Letters | 2010
Shuwen He; Peter H. Dobbelaar; Jian Liu; Tianying Jian; Iyassu K. Sebhat; Linus S. Lin; Allan J. Goodman; Cheng Guo; Peter R. Guzzo; Mark Hadden; Alan J. Henderson; Megan Ruenz; Bruce J. Sargent; Larry Yet; Theresa M. Kelly; Oksana C. Palyha; Yanqing Kan; Jie Pan; Howard Y. Chen; Donald J. Marsh; Lauren P. Shearman; Alison M. Strack; Joseph M. Metzger; Scott D. Feighner; Carina Tan; Andrew D. Howard; Constantin Tamvakopoulos; Qianping Peng; Xiao-Ming Guan; Marc L. Reitman
We report SAR studies on a novel non-peptidic bombesin receptor subtype-3 (BRS-3) agonist lead series derived from high-throughput screening hit RY-337. This effort led to the discovery of compound 22e with significantly improved potency at both rodent and human BRS-3.
Bioorganic & Medicinal Chemistry Letters | 2010
Mark Hadden; Allan J. Goodman; Cheng Guo; Peter R. Guzzo; Alan J. Henderson; Kevin Pattamana; Megan Ruenz; Bruce J. Sargent; Brian Swenson; Larry Yet; Jian Liu; Shuwen He; Iyassu K. Sebhat; Linus S. Lin; Constantin Tamvakopoulos; Qianping Peng; Yanqing Kan; Oksana C. Palyha; Theresa M. Kelly; Xiao-Ming Guan; Joseph M. Metzger; Marc L. Reitman; Ravi P. Nargund
SAR around non-peptidic potent bombesin receptor subtype-3 (BRS-3) agonist lead 2 is presented. Attempts to replace the carboxylic acid with heterocyclic isosteres to improve oral bioavailability and brain penetration are described.
Bioorganic & Medicinal Chemistry Letters | 2015
William T. McElroy; W. Michael Seganish; R. Jason Herr; James P. Harding; Jinhai Yang; Larry Yet; Venukrishnan Komanduri; Koraboina Chandra Prakash; Brian J. Lavey; Deen Tulshian; William J. Greenlee; Christopher Sondey; Thierry O. Fischmann; Xiaoda Niu
Interleukin receptor-associated kinase 4 (IRAK4) is a critical element of the Toll-like/interleukin-1 receptor inflammation signaling pathway. A screening campaign identified a novel diaminopyrimidine hit that exhibits weak IRAK4 inhibitory activity and a ligand efficiency of 0.25. Hit-to-lead activities were conducted through independent SAR studies of each of the four pyrimidine substituents. Optimal activity was observed upon removal of the pyrimidine C-4 chloro substituent. The intact C-6 carboribose is required for IRAK4 inhibition. Numerous heteroaryls were tolerated at the C-5 position, with azabenzothiazoles conferring the best activities. Aminoheteroaryls were preferred at the C-2 position. These studies led to the discovery of inhibitors 35, 36, and 38 that exhibit nanomolar inhibition of IRAK4, improved ligand efficiencies, and modest kinase selectivities.
Bioorganic & Medicinal Chemistry Letters | 2010
Cheng Guo; Peter R. Guzzo; Mark Hadden; Bruce J. Sargent; Larry Yet; Yanqing Kan; Oksana C. Palyha; Theresa M. Kelly; Xiao-Ming Guan; Kim Rosko; Karen Gagen; Joseph M. Metzger; Jasminka Dragovic; Kathryn A. Lyons; Linus S. Lin; Ravi P. Nargund
The original structure of a high-throughput screening hit obtained from an external vendor was revised based on multiple NMR studies. The active compound was re-synthesized via a novel route and its structure and biological activity as a BRS-3 agonist were unambiguously confirmed. Multi-gram quantities of the hit were prepared for pharmacokinetic and efficacy studies. The synthetic strategy allowed for the preparation of multiple analogs for SAR exploration.
Bioorganic & Medicinal Chemistry Letters | 2015
W. Michael Seganish; William T. McElroy; R. Jason Herr; Stephanie Brumfield; William J. Greenlee; James P. Harding; Venukrishnan Komanduri; Julius J. Matasi; Koraboina Chandra Prakash; Deen Tulshian; Jinhai Yang; Larry Yet; Kristine Devito; James Fossetta; Charles G. Garlisi; Daniel Lundell; Xiaoda Niu; Christopher Sondey
IRAK4 plays a key role in TLR/IL-1 signaling. Previous efforts identified a series of aminopyrimidine IRAK4 inhibitors that possess good potency, but modest kinase selectivity. Exploration of substituents at the C-2 and C-5 positions generated compounds that maintained IRAK4 potency and improved kinase selectivity. Additionally, it was found that the pyrimidine core could be replaced with a pyridine and still retain potency and kinase selectivity. The optimization efforts led to compound 26 which had an IRAK4 IC50 of 0.7 nM, an IC50 of 55 nM on THP-1 cells stimulated with LPS, a TLR4 agonist, and greater than 100-fold selectivity versus 96% of a panel of 306 kinases.