Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Brive is active.

Publication


Featured researches published by Lars Brive.


Biology of the Cell | 2005

Aquaporins in yeasts and filamentous fungi

Nina Pettersson; Caroline Filipsson; Evren Becit; Lars Brive; Stefan Hohmann

Recently, genome sequences from different fungi have become available. This information reveals that yeasts and filamentous fungi possess up to five aquaporins. Functional analyses have mainly been performed in budding yeast, Saccharomyces cerevisiae, which has two orthodox aquaporins and two aquaglyceroporins. Whereas Aqy1 is a spore‐specific water channel, Aqy2 is only expressed in proliferating cells and controlled by osmotic signals. Fungal aquaglyceroporins often have long, poorly conserved terminal extensions and differ in the otherwise highly conserved NPA motifs, being NPX and NXA respectively. Three subgroups can be distinguished. Fps1‐like proteins seem to be restricted to yeasts. Fps1, the osmogated glycerol export channel in S. cerevisiae, plays a central role in osmoregulation and determination of intracellular glycerol levels. Sequences important for gating have been identified within its termini. Another type of aquaglyceroporin, resembling S. cerevisiae Yfl054, has a long N‐terminal extension and its physiological role is currently unknown. The third group of aquaglyceroporins, only found in filamentous fungi, have extensions of variable size. Taken together, yeasts and filamentous fungi are a fruitful resource to study the function, evolution, role and regulation of aquaporins, and the possibility to compare orthologous sequences from a large number of different organisms facilitates functional and structural studies.


Journal of Biological Chemistry | 2010

The Annexin I Sequence Gln9-Ala10-Trp11-Phe12 Is a Core Structure for Interaction with the Formyl Peptide Receptor 1

Charlotta Movitz; Lars Brive; Kristoffer Hellstrand; Marie-Josèphe Rabiet; Claes Dahlgren

The N-terminal part of the calcium-regulated and phospholipid-binding protein annexin AI contains peptide sequences with pro- and anti-inflammatory activities. We have earlier shown that a proinflammatory signal triggered by one of these peptides, Gln9–Lys25, is mediated by FPR1, a member of the formyl peptide receptor family expressed in human neutrophils. To determine the core structure in Gln9–Lys25, smaller peptides were generated, and their capacity to activate neutrophils was determined. A peptide spanning from amino acid Glu14 to Lys25 was inactive, whereas the activity was retained in the Gln9–Tyr20 peptide. Removal of amino acids from the C and N terminus of Gln9–Tyr20 revealed that the first amino acid (Gln9) was of the utmost importance for activity. The core structure that activated the neutrophil NADPH oxidase to release superoxide anions was Gln9-Ala10-Trp11-Phe12. This peptide also inhibited the activity induced by N-formyl-Met-Leu-Phe and WKYMVM. A structural model of the peptide agonist-FPR1 complex suggests that the transmembrane part of the binding pocket of the receptor binds optimally to a tetrapeptide. According to the model and the results presented, the N-terminal amino acid glutamine in Gln9–Phe12 is located close to the bottom of the binding cleft, leaving for steric reasons insufficient space to extend the peptide at the N terminus. The addition of amino acids at the C terminus will not affect binding. The model presented may be helpful in developing specific FPR1 ligands.


Journal of Molecular Biology | 2008

Heterodimer Formation within Universal Stress Protein Classes Revealed By an In Silico and Experimental Approach

Laurence Nachin; Lars Brive; Karin-Cecilia Persson; Peder Svensson; Thomas Nyström

Universal stress proteins (Usps) are found in all kingdoms of life and can be divided into four classes by phylogenic analysis. According to available structures, Usps exist as homodimers, and genetic studies show that their cellular assignments are extensive, including functions relating to stress resistance, carbon metabolism, cellular adhesion, motility, and bacterial virulence. We approached the question of how Usps can achieve such a variety of functions in a cell by using a new procedure for statistical analysis of multiple sequence alignments, based on physicochemically related values for each amino acid residue of Usp dimer interfaces. The results predicted that Usp proteins within a class may, in addition to forming homodimers, be able to form heterodimers. Using Escherichia coli Usps as model proteins, we confirmed the existence of such interactions. We especially focused on class I UspA and UspC and demonstrated that they are able to form homo- and heterodimers in vitro and in vivo. We suggest that this ability to form both homo- and heterodimers may allow for an expansion of the functional repertoire of Usps and explains why organisms usually contain multiple usp paralogues.


Journal of Molecular Modeling | 2012

Molecular docking of 2-(benzimidazol-2-ylthio)-N-phenylacetamide-derived small-molecule agonists of human formyl peptide receptor 1

Andrei I. Khlebnikov; Igor A. Schepetkin; Liliya N. Kirpotina; Lars Brive; Claes Dahlgren; Mark A. Jutila; Mark T. Quinn

Human N-formyl peptide receptor 1 (FPR1) is a G protein-coupled receptor (GPCR) involved in host defense and sensing cellular damage. Since structure-based ligand design for many GPCRs, including FPR1, is restricted by the lack of experimental three dimensional structures, homology modeling has been widely used to study GPCR-ligand binding. Indeed, receptor-ligand binding mode predictions can be derived from homology modeling with supporting ligand information. In the present work, we report comparative docking studies of 2-(benzimidazol-2-ylthio)-N-phenylacetamide derived FPR1 agonists, identified here and previously, with several known FPR1 peptide agonists in a FPR1 homology model that is based on the crystal structure of bovine rhodopsin. We found that the binding pocket of the most active molecules shares some common features with high affinity FPR1 peptide agonists, suggesting that they may bind to similar binding sites. Classification tree analysis led to the derivation of a good recognition model based on four amino acid descriptors for distinguishing FPR1 ligands from inactive analogs. Hence, the corresponding residues (Thr199, Arg201, Gly202, and Ala261) can be considered as markers of important areas in the ligand binding site. Concurrently, we identified several unique binding features of benzimidazole derivatives and showed that alkoxy-substituents of the benzimidazole ring are located within a FPR1 hole bounded by Thr199, Thr265, Ile268, and Leu271 or in a groove in the vicinity of Leu198, Arg201, Gly202, and Arg205. The understanding of these molecular features will likely prove beneficial in future design of novel FPR1 agonists based on the benzimidazole scaffold.


ChemMedChem | 2010

Selective Pharmacophore Models of Dopamine D1 and D2 Full Agonists Based on Extended Pharmacophore Features

Marcus Malo; Lars Brive; Kristina Luthman; Peder Svensson

This study is focused on the identification of structural features that determine the selectivity of dopamine receptor agonists toward D1 and D2 receptors. Selective pharmacophore models were developed for both receptors. The models were built by using projected pharmacophoric features that represent the main agonist interaction sites in the receptor (the Ser residues in TM5 and the Asp in TM3), a directional aromatic feature in the ligand, a feature with large positional tolerance representing the positively charged nitrogen in the ligand, and sets of excluded volumes reflecting the shapes of the receptors. The sets of D1 and D2 ligands used for modeling were carefully selected from published sources and consist of structurally diverse, conformationally rigid full agonists as active ligands together with structurally related inactives. The robustness of the models in discriminating actives from inactives was tested against four ensembles of conformations generated by using different established methods and different force fields. The reasons for the selectivity can be attributed to both geometrical differences in the arrangement of the features, e.g., different tilt angels of the π system, as well as shape differences covered by the different sets of excluded volumes. This work provides useful information for the design of new D1 and D2 agonists and also for comparative homology modeling of D1 and D2 receptors. The approach is general and could therefore be applied to other ligand–protein interactions for which no experimental protein structure is available.


ChemMedChem | 2012

Investigation of D1 Receptor–Agonist Interactions and D1/D2 Agonist Selectivity Using a Combination of Pharmacophore and Receptor Homology Modeling

Marcus Malo; Lars Brive; Kristina Luthman; Peder Svensson

The aim of this study was to use a combined structure and pharmacophore modeling approach to extract information regarding dopamine D1 receptor agonism and D1/D2 agonist selectivity. A 3D structure model of the D1 receptor in its agonist‐bound state was constructed with a full D1 agonist present in the binding site. Two different binding modes were identified using (+)‐doxanthrine or SKF89626 in the modeling procedure. The 3D model was further compared with a selective D1 agonist pharmacophore model. The pharmacophore feature arrangement was found to be in good agreement with the binding site composition of the receptor model, but the excluded volumes did not fully reflect the shape of the agonist binding pocket. A new receptor‐based pharmacophore model was developed with forbidden volumes centered on atom positions of amino acids in the binding site. The new pharmacophore model showed a similar ability to discriminate as the previous model. A comparison of the 3D structures and pharmacophore models of D1 and D2 receptors revealed differences in shape and ligand‐interacting features that determine selectivity of D1 and D2 receptor agonists. A hydrogen bond pharmacophoric feature (Ser‐TM5) was shown to contribute most to the selectivity. Non‐conserved residues in the binding pocket that strongly contribute to D1/D2 receptor agonist selectivity were also identified; those were Ser/Cys3.36, Tyr/Phe5.38, Ser/Tyr5.41, and Asn/His6.55 in the transmembrane (TM) helix region, together with Ser/Ile and Leu/Asn in the second extracellular loop (EC2). This work provides useful information for the design of new selective D1 and D2 agonists. The combined receptor structure and pharmacophore modeling approach is considered to be general, and could therefore be applied to other ligand–protein interactions for which experimental information is limited.


ChemMedChem | 2012

Investigation of D2 Receptor–Agonist Interactions Using a Combination of Pharmacophore and Receptor Homology Modeling

Marcus Malo; Lars Brive; Kristina Luthman; Peder Svensson

A combined modeling approach was used to identify structural factors that underlie the structure–activity relationships (SARs) of full dopamine D2 receptor agonists and structurally similar inactive compounds. A 3D structural model of the dopamine D2 receptor was constructed, with the agonist (−)‐(R)‐2‐OH‐NPA present in the binding site during the modeling procedure. The 3D model was evaluated and compared with our previously published D2 agonist pharmacophore model. The comparison revealed an inconsistency between the projected hydrogen bonding feature (Ser‐TM5) in the pharmacophore model and the TM5 region in the structure model. A new refined pharmacophore model was developed, guided by the shape of the binding site in the receptor model and with less emphasis on TM5 interactions. The combination of receptor and pharmacophore modeling also identified the importance of His3936.55 for agonist binding. This convergent 3D pharmacophore and protein structure modeling strategy is considered to be general and can be highly useful in less well‐characterized systems to explore ligand–receptor interactions. The strategy has the potential to identify weaknesses in the individual models and thereby provides an opportunity to improve the discriminating predictivity of both pharmacophore searches and structure‐based virtual screens.


PLOS ONE | 2011

Design, synthesis and characterization of a highly effective inhibitor for analog-sensitive (as) kinases.

Michael Klein; Montse Morillas; Alexandre Vendrell; Lars Brive; Marinella Gebbia; Iain M. Wallace; Guri Giaever; Corey Nislow; Francesc Posas; Morten Grøtli

Highly selective, cell-permeable and fast-acting inhibitors of individual kinases are sought-after as tools for studying the cellular function of kinases in real time. A combination of small molecule synthesis and protein mutagenesis, identified a highly potent inhibitor (1-Isopropyl-3-(phenylethynyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine) of a rationally engineered Hog1 serine/threonine kinase (Hog1T100G). This inhibitor has been successfully used to study various aspects of Hog1 signaling, including a transient cell cycle arrest and gene expression changes mediated by Hog1 in response to stress. This study also underscores that the general applicability of this approach depends, in part, on the selectivity of the designed the inhibitor with respect to activity versus the engineered and wild type kinases. To explore this specificity in detail, we used a validated chemogenetic assay to assess the effect of this inhibitor on all gene products in yeast in parallel. The results from this screen emphasize the need for caution and for case-by-case assessment when using the Analog-Sensitive Kinase Allele technology to assess the physiological roles of kinases.


Journal of Computer-aided Molecular Design | 2013

Development of 7TM receptor-ligand complex models using ligand-biased, semi-empirical helix-bundle repacking in torsion space: application to the agonist interaction of the human dopamine D2 receptor

Marcus Malo; Ronnie Persson; Peder Svensson; Kristina Luthman; Lars Brive

Prediction of 3D structures of membrane proteins, and of G-protein coupled receptors (GPCRs) in particular, is motivated by their importance in biological systems and the difficulties associated with experimental structure determination. In the present study, a novel method for the prediction of 3D structures of the membrane-embedded region of helical membrane proteins is presented. A large pool of candidate models are produced by repacking of the helices of a homology model using Monte Carlo sampling in torsion space, followed by ranking based on their geometric and ligand-binding properties. The trajectory is directed by weak initial restraints to orient helices towards the original model to improve computation efficiency, and by a ligand to guide the receptor towards a chosen conformational state. The method was validated by construction of the β1 adrenergic receptor model in complex with (S)-cyanopindolol using bovine rhodopsin as template. In addition, models of the dopamine D2 receptor were produced with the selective and rigid agonist (R)-N-propylapomorphine ((R)-NPA) present. A second quality assessment was implemented by evaluating the results from docking of a library of 29 ligands with known activity, which further discriminated between receptor models. Agonist binding and recognition by the dopamine D2 receptor is interpreted using the 3D structure model resulting from the approach. This method has a potential for modeling of all types of helical transmembrane proteins for which a structural template with sequence homology sufficient for homology modeling is not available or is in an incorrect conformational state, but for which sufficient empirical information is accessible.


Structure | 2007

Crystal Structure of AcrB in Complex with a Single Transmembrane Subunit Reveals Another Twist

Susanna Törnroth-Horsefield; Pontus Gourdon; Rob Horsefield; Lars Brive; Natsuko Yamamoto; Hirotada Mori; Arjan Snijder; Richard Neutze

Collaboration


Dive into the Lars Brive's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcus Malo

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Claes Dahlgren

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Anders Janzon

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arjan Snijder

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evren Becit

University of Gothenburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge