Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Bullinger is active.

Publication


Featured researches published by Lars Bullinger.


The New England Journal of Medicine | 2000

Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia

Hartmut Döhner; Stephan Stilgenbauer; Axel Benner; Elke Leupolt; Alexander Kröber; Lars Bullinger; Konstanze Döhner; Martin Bentz; Peter Lichter

BACKGROUND Fluorescence in situ hybridization has improved the detection of genomic aberrations in chronic lymphocytic leukemia. We used this method to identify chromosomal abnormalities in patients with chronic lymphocytic leukemia and assessed their prognostic implications. METHODS Mononuclear cells from the blood of 325 patients with chronic lymphocytic leukemia were analyzed by fluorescence in situ hybridization for deletions in chromosome bands 6q21, 11q22-23, 13q14, and 17p13; trisomy of bands 3q26, 8q24, and 12q13; and translocations involving band 14q32. Molecular cytogenetic data were correlated with clinical findings. RESULTS Chromosomal aberrations were detected in 268 of 325 cases (82 percent). The most frequent changes were a deletion in 13q (55 percent), a deletion in 11q (18 percent), trisomy of 12q (16 percent), a deletion in 17p (7 percent), and a deletion in 6q (7 percent). Five categories were defined with a statistical model: 17p deletion, 11q deletion, 12q trisomy, normal karyotype, and 13q deletion as the sole abnormality; the median survival times for patients in these groups were 32, 79, 114, 111, and 133 months, respectively. Patients in the 17p- and 11q-deletion groups had more advanced disease than those in the other three groups. Patients with 17p deletions had the shortest median treatment-free interval (9 months), and those with 13q deletions had the longest (92 months). In multivariate analysis, the presence or absence of a 17p deletion, the presence or absence of an 11q deletion, age, Binet stage, the serum lactate dehydrogenase level, and the white-cell count gave significant prognostic information. CONCLUSIONS Genomic aberrations in chronic lymphocytic leukemia are important independent predictors of disease progression and survival. These findings have implications for the design of risk-adapted treatment strategies.


The New England Journal of Medicine | 2008

Mutations and Treatment Outcome in Cytogenetically Normal Acute Myeloid Leukemia

Richard F. Schlenk; Konstanze Döhner; Jürgen Krauter; Stefan Fröhling; Andrea Corbacioglu; Lars Bullinger; Marianne Habdank; Daniela Späth; Michael Morgan; Axel Benner; Brigitte Schlegelberger; Gerhard Heil; Arnold Ganser; Hartmut Döhner

BACKGROUND Mutations occur in several genes in cytogenetically normal acute myeloid leukemia (AML) cells: the nucleophosmin gene (NPM1), the fms-related tyrosine kinase 3 gene (FLT3), the CCAAT/enhancer binding protein alpha gene (CEPBA), the myeloid-lymphoid or mixed-lineage leukemia gene (MLL), and the neuroblastoma RAS viral oncogene homolog (NRAS). We evaluated the associations of these mutations with clinical outcomes in patients. METHODS We compared the mutational status of the NPM1, FLT3, CEBPA, MLL, and NRAS genes in leukemia cells with the clinical outcome in 872 adults younger than 60 years of age with cytogenetically normal AML. Patients had been entered into one of four trials of therapy for AML. In each study, patients with an HLA-matched related donor were assigned to undergo stem-cell transplantation. RESULTS A total of 53% of patients had NPM1 mutations, 31% had FLT3 internal tandem duplications (ITDs), 11% had FLT3 tyrosine kinase-domain mutations, 13% had CEBPA mutations, 7% had MLL partial tandem duplications (PTDs), and 13% had NRAS mutations. The overall complete-remission rate was 77%. The genotype of mutant NPM1 without FLT3-ITD, the mutant CEBPA genotype, and younger age were each significantly associated with complete remission. Of the 663 patients who received postremission therapy, 150 underwent hematopoietic stem-cell transplantation from an HLA-matched related donor. Significant associations were found between the risk of relapse or the risk of death during complete remission and the leukemia genotype of mutant NPM1 without FLT3-ITD (hazard ratio, 0.44; 95% confidence interval [CI], 0.32 to 0.61), the mutant CEBPA genotype (hazard ratio, 0.48; 95% CI, 0.30 to 0.75), and the MLL-PTD genotype (hazard ratio, 1.56; 95% CI, 1.00 to 2.43), as well as receipt of a transplant from an HLA-matched related donor (hazard ratio, 0.60; 95% CI, 0.44 to 0.82). The benefit of the transplant was limited to the subgroup of patients with the prognostically adverse genotype FLT3-ITD or the genotype consisting of wild-type NPM1 and CEBPA without FLT3-ITD. CONCLUSIONS Genotypes defined by the mutational status of NPM1, FLT3, CEBPA, and MLL are associated with the outcome of treatment for patients with cytogenetically normal AML.


Journal of Clinical Oncology | 2010

IDH1 and IDH2 Mutations Are Frequent Genetic Alterations in Acute Myeloid Leukemia and Confer Adverse Prognosis in Cytogenetically Normal Acute Myeloid Leukemia With NPM1 Mutation Without FLT3 Internal Tandem Duplication

Peter Paschka; Richard F. Schlenk; Verena I. Gaidzik; Marianne Habdank; Jan Krönke; Lars Bullinger; Daniela Späth; Sabine Kayser; Manuela Zucknick; Katharina Götze; Heinz-A. Horst; Ulrich Germing; Hartmut Döhner; Konstanze Döhner

PURPOSE To analyze the frequency and prognostic impact of isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) mutations in acute myeloid leukemia (AML). PATIENTS AND METHODS We studied 805 adults (age range, 16 to 60 years) with AML enrolled on German-Austrian AML Study Group (AMLSG) treatment trials AML HD98A and APL HD95 for mutations in exon 4 of IDH1 and IDH2. Patients were also studied for NPM1, FLT3, MLL, and CEBPA mutations. The median follow-up for survival was 6.3 years. RESULTS IDH mutations were found in 129 patients (16.0%) -IDH1 in 61 patients (7.6%), and IDH2 in 70 patients (8.7%). Two patients had both IDH1 and IDH2 mutations. All but one IDH1 mutation caused substitutions of residue R132; IDH2 mutations caused changes of R140 (n = 48) or R172 (n = 22). IDH mutations were associated with older age (P < .001; effect conferred by IDH2 only); lower WBC (P = .04); higher platelets (P < .001); cytogenetically normal (CN) -AML (P< .001); and NPM1 mutations, in particular with the genotype of mutated NPM1 without FLT3 internal tandem duplication (ITD; P < .001). In patients with CN-AML with the latter genotype, IDH mutations adversely impacted relapse-free survival (RFS; P = .02) and overall survival (P = .03), whereas outcome was not affected in patients with CN-AML who lacked this genotype. In CN-AML, multivariable analyses revealed a significant interaction between IDH mutation and the genotype of mutated NPM1 without FLT3-ITD (ie, the adverse impact of IDH mutation [RFS]; P = .046 was restricted to this patient subset). CONCLUSION IDH1 and IDH2 mutations are recurring genetic changes in AML. They constitute a poor prognostic factor in CN-AML with mutated NPM1 without FLT3-ITD, which allows refined risk stratification of this AML subset.


The New England Journal of Medicine | 2016

Genomic Classification and Prognosis in Acute Myeloid Leukemia

Elli Papaemmanuil; Moritz Gerstung; Lars Bullinger; Verena I. Gaidzik; Peter Paschka; Nicola D. Roberts; Nicola E Potter; Michael Heuser; Felicitas Thol; Niccolo Bolli; Gunes Gundem; Peter Van Loo; Inigo Martincorena; Peter Ganly; Laura Mudie; Stuart McLaren; Sarah O'Meara; Keiran Raine; David R. Jones; Jon Teague; Adam Butler; Mel Greaves; Arnold Ganser; Konstanze Döhner; Richard F. Schlenk; Hartmut Döhner; Peter J. Campbell

BACKGROUND Recent studies have provided a detailed census of genes that are mutated in acute myeloid leukemia (AML). Our next challenge is to understand how this genetic diversity defines the pathophysiology of AML and informs clinical practice. METHODS We enrolled a total of 1540 patients in three prospective trials of intensive therapy. Combining driver mutations in 111 cancer genes with cytogenetic and clinical data, we defined AML genomic subgroups and their relevance to clinical outcomes. RESULTS We identified 5234 driver mutations across 76 genes or genomic regions, with 2 or more drivers identified in 86% of the patients. Patterns of co-mutation compartmentalized the cohort into 11 classes, each with distinct diagnostic features and clinical outcomes. In addition to currently defined AML subgroups, three heterogeneous genomic categories emerged: AML with mutations in genes encoding chromatin, RNA-splicing regulators, or both (in 18% of patients); AML with TP53 mutations, chromosomal aneuploidies, or both (in 13%); and, provisionally, AML with IDH2(R172) mutations (in 1%). Patients with chromatin-spliceosome and TP53-aneuploidy AML had poor outcomes, with the various class-defining mutations contributing independently and additively to the outcome. In addition to class-defining lesions, other co-occurring driver mutations also had a substantial effect on overall survival. The prognostic effects of individual mutations were often significantly altered by the presence or absence of other driver mutations. Such gene-gene interactions were especially pronounced for NPM1-mutated AML, in which patterns of co-mutation identified groups with a favorable or adverse prognosis. These predictions require validation in prospective clinical trials. CONCLUSIONS The driver landscape in AML reveals distinct molecular subgroups that reflect discrete paths in the evolution of AML, informing disease classification and prognostic stratification. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT00146120.).


Cancer Cell | 2011

MLL-Rearranged Leukemia Is Dependent on Aberrant H3K79 Methylation by DOT1L

Kathrin M. Bernt; Nan Zhu; Amit U. Sinha; Sridhar Vempati; Joerg Faber; Andrei V. Krivtsov; Zhaohui Feng; Natalie Punt; Amanda Daigle; Lars Bullinger; Roy M. Pollock; Victoria M. Richon; Andrew L. Kung; Scott A. Armstrong

The histone 3 lysine 79 (H3K79) methyltransferase Dot1l has been implicated in the development of leukemias bearing translocations of the Mixed Lineage Leukemia (MLL) gene. We identified the MLL-fusion targets in an MLL-AF9 leukemia model, and conducted epigenetic profiling for H3K79me2, H3K4me3, H3K27me3, and H3K36me3 in hematopoietic progenitor and leukemia stem cells (LSCs). We found abnormal profiles only for H3K79me2 on MLL-AF9 fusion target loci in LSCs. Inactivation of Dot1l led to downregulation of direct MLL-AF9 targets and an MLL translocation-associated gene expression signature, whereas global gene expression remained largely unaffected. Suppression of MLL translocation-associated gene expression corresponded with dependence of MLL-AF9 leukemia on Dot1l in vivo. These data point to DOT1L as a potential therapeutic target in MLL-rearranged leukemia.


Blood | 2008

MYC stimulates EZH2 expression by repression of its negative regulator miR-26a

Sandrine Sander; Lars Bullinger; Kay Klapproth; Katja Fiedler; Hans A. Kestler; Thomas F. E. Barth; Peter Möller; Stephan Stilgenbauer; Jonathan R. Pollack; Thomas Wirth

The MYC oncogene, which is commonly mutated/amplified in tumors, represents an important regulator of cell growth because of its ability to induce both proliferation and apoptosis. Recent evidence links MYC to altered miRNA expression, thereby suggesting that MYC-regulated miRNAs might contribute to tumorigenesis. To further analyze the impact of MYC-regulated miRNAs, we investigated a murine lymphoma model harboring the MYC transgene in a Tet-off system to control its expression. Microarray-based miRNA expression profiling revealed both known and novel MYC targets. Among the miRNAs repressed by MYC, we identified the potential tumor suppressor miR-26a, which possessed the ability to attenuate proliferation in MYC-dependent cells. Interestingly, miR-26a was also found to be deregulated in primary human Burkitt lymphoma samples, thereby probably being of clinical relevance. Although today only few miRNA targets have been identified in human disease, we could show that ectopic expression of miR-26a influenced cell cycle progression by targeting the bona fide oncogene EZH2, a Polycomb protein and global regulator of gene expression yet unknown to be regulated by miRNAs. Thus, in addition to directly targeting protein-coding genes, MYC modulates genes important to oncogenesis via deregulation of miRNAs, thereby vitally contributing to MYC-induced lymphomagenesis.


Journal of Clinical Oncology | 2011

RUNX1 Mutations in Acute Myeloid Leukemia: Results From a Comprehensive Genetic and Clinical Analysis From the AML Study Group

Verena I. Gaidzik; Lars Bullinger; Richard F. Schlenk; Andreas Zimmermann; Jürgen Röck; Peter Paschka; Andrea Corbacioglu; Jürgen Krauter; Brigitte Schlegelberger; Arnold Ganser; Daniela Späth; Andrea Kündgen; Ingo G.H. Schmidt-Wolf; Katharina Götze; David Nachbaur; Michael Pfreundschuh; Heinz A. Horst; Hartmut Döhner; Konstanze Döhner

PURPOSE To evaluate frequency, biologic features, and clinical relevance of RUNX1 mutations in acute myeloid leukemia (AML). PATIENTS AND METHODS Diagnostic samples from 945 patients (age 18 to 60 years) were analyzed for RUNX1 mutations. In a subset of cases (n = 269), microarray gene expression analysis was performed. RESULTS Fifty-nine RUNX1 mutations were identified in 53 (5.6%) of 945 cases, predominantly in exons 3 (n = 11), 4 (n = 10), and 8 (n = 23). RUNX1 mutations clustered in the intermediate-risk cytogenetic group (46 of 640, 7.2%; cytogenetically normal, 34 of 538, 6.3%), whereas they were less frequent in adverse-risk cytogenetics (five of 109, 4.6%) and absent in core-binding-factor AML (0 of 77) and acute promyelocytic leukemia (0 of 61). RUNX1 mutations were associated with MLL-partial tandem duplications (P = .0007) and IDH1/IDH2 mutations (P = .03), inversely correlated with NPM1 (P < .0001), and in trend with CEBPA (P = .10) mutations. RUNX1 mutations were characterized by a distinct gene expression pattern; this RUNX1 mutation-derived signature was not exclusive for the mutation, but also included mostly adverse-risk AML [eg, 7q-, -7, inv(3), or t(3;3)]. RUNX1 mutations predicted for resistance to chemotherapy (rates of refractory disease 30% and 19%, P = .047, for RUNX1-mutated and wild-type patients, respectively), as well as inferior event-free survival (EFS; P < .0001), relapse-free survival (RFS, P = .022), and overall survival (P = .051). In multivariable analysis, RUNX1 mutations were an independent prognostic marker for shorter EFS (P = .007). Explorative subgroup analysis revealed that allogeneic hematopoietic stem-cell transplantation had a favorable impact on RFS in RUNX1-mutated patients (P < .0001). CONCLUSION AML with RUNX1 mutations are characterized by distinct genetic properties and are associated with resistance to therapy and inferior outcome.


Leukemia | 2002

Genetics of chronic lymphocytic leukemia: Genomic aberrations and VH gene mutation status in pathogenesis and clinical course

Stephan Stilgenbauer; Lars Bullinger; P. Lichter; Hartmut Döhner

The genetic characterization of chronic lymphocytic leukemia (CLL) has made significant progress over the past few years. While conventional cytogenetic analyses only detected chromosome aberrations in 40–50% of cases, new molecular cytogenetic methods, such as fluorescence in situ hybridization (FISH), have greatly enhanced our ability to detect chromosomal abnormalities in CLL. Today, genomic aberrations are detected in over 80% of CLL cases. Genes potentially involved in the pathogenesis were identified with ATMin a subset of cases with 11q deletion and p53 in cases with 17p13 deletion. For the most frequent aberration, the deletion 13q14, candidate genes have been isolated. Genetic subgroups with distinct clinical features have been identified. 11q deletion is associated with marked lymphadenopathy and rapid disease progression. 17p deletion predicts for treatment failure with alkylating agents, as well as fludarabine and short survival times. In multivariate analysis 11q and 17p deletions provided independent prognostic information. Recently, another important issue of genetic risk classification in CLL was identified with the mutation status of the immunoglobulin variable heavy chain genes (VH). CLL cases with unmutated VH show more rapid disease progression and shorter survival times. Whether CD38 expression can serve as a surrogate marker for VH mutation status is currently discussed controversially. VH mutation status and genomic abnormalities, such as 17p and 11q deletion, have recently been shown to be related to each other, but were of independent prognostic information in multivariate analysis. Moreover, genomic aberrations and VH mutation status appear to give prognostic information irrespective of the clinical stage and may therefore allow a risk assessment for individual patients early in the course of their disease.


Blood | 2012

TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome

Frank G. Rücker; Richard F. Schlenk; Lars Bullinger; Sabine Kayser; Veronica Teleanu; Helena Kett; Marianne Habdank; Carla Maria Kugler; Karlheinz Holzmann; Verena I. Gaidzik; Peter Paschka; Gerhard Held; Marie von Lilienfeld-Toal; Michael Lübbert; Stefan Fröhling; Thorsten Zenz; Jürgen Krauter; Brigitte Schlegelberger; Arnold Ganser; Peter Lichter; Konstanze Döhner; Hartmut Döhner

To assess the frequency of TP53 alterations and their correlation with other genetic changes and outcome in acute myeloid leukemia with complex karyotype (CK-AML), we performed integrative analysis using TP53 mutational screening and array-based genomic profiling in 234 CK-AMLs. TP53 mutations were found in 141 of 234 (60%) and TP53 losses were identified in 94 of 234 (40%) CK-AMLs; in total, 164 of 234 (70%) cases had TP53 alterations. TP53-altered CK-AML were characterized by a higher degree of genomic complexity (aberrations per case, 14.30 vs 6.16; P < .0001) and by a higher frequency of specific copy number alterations, such as -5/5q-, -7/7q-, -16/16q-, -18/18q-, +1/+1p, and +11/+11q/amp11q13∼25; among CK-AMLs, TP53-altered more frequently exhibited a monosomal karyotype (MK). Patients with TP53 alterations were older and had significantly lower complete remission rates, inferior event-free, relapse-free, and overall survival. In multivariable analysis for overall survival, TP53 alterations, white blood cell counts, and age were the only significant factors. In conclusion, TP53 is the most frequently known altered gene in CK-AML. TP53 alterations are associated with older age, genomic complexity, specific DNA copy number alterations, MK, and dismal outcome. In multivariable analysis, TP53 alteration is the most important prognostic factor in CK-AML, outweighing all other variables, including the MK category.


Blood | 2014

Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial

Stephan Stilgenbauer; Andrea Schnaiter; Peter Paschka; Thorsten Zenz; Marianna Rossi; Konstanze Döhner; Andreas Bühler; Sebastian Böttcher; Matthias Ritgen; Michael Kneba; Dirk Winkler; Eugen Tausch; Patrick Hoth; Jennifer Edelmann; Daniel Mertens; Lars Bullinger; Manuela Bergmann; Sabrina Kless; Silja Mack; Ulrich Jäger; Nancy Patten; Lin Wu; Michael K. Wenger; Günter Fingerle-Rowson; Peter Lichter; Mario Cazzola; Clemens M. Wendtner; Anna Maria Fink; Kirsten Fischer; Raymonde Busch

Mutations in TP53, NOTCH1, and SF3B1 were analyzed in the CLL8 study evaluating first-line therapy with fludarabine and cyclophosphamide (FC) or FC with rituximab (FCR) among patients with untreated chronic lymphocytic leukemia (CLL). TP53, NOTCH1, and SF3B1 were mutated in 11.5%, 10.0%, and 18.4% of patients, respectively. NOTCH1(mut) and SF3B1(mut) virtually showed mutual exclusivity (0.6% concurrence), but TP53(mut) was frequently found in NOTCH1(mut) (16.1%) and in SF3B1(mut) (14.0%) patients. There were few significant associations with clinical and laboratory characteristics, but genetic markers had a strong influence on response and survival. In multivariable analyses, an independent prognostic impact was found for FCR, thymidine kinase (TK) ≥10 U/L, unmutated IGHV, 11q deletion, 17p deletion, TP53(mut), and SF3B1(mut) on progression-free survival; and for FCR, age ≥65 years, Eastern Cooperative Oncology Group performance status ≥1, β2-microglobulin ≥3.5 mg/L, TK ≥10 U/L, unmutated IGHV, 17p deletion, and TP53(mut) on overall survival. Notably, predictive marker analysis identified an interaction of NOTCH1 mutational status and treatment in that rituximab failed to improve response and survival in patients with NOTCH1(mut). In conclusion, TP53 and SF3B1 mutations appear among the strongest prognostic markers in CLL patients receiving current-standard first-line therapy. NOTCH1(mut) was identified as a predictive marker for decreased benefit from the addition of rituximab to FC. This study is registered at www.clinicaltrials.gov as #NCT00281918.

Collaboration


Dive into the Lars Bullinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Fröhling

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Scholl

German Cancer Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge