Lars E. P. Dietrich
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lars E. P. Dietrich.
Molecular Microbiology | 2006
Lars E. P. Dietrich; Alexa Price-Whelan; Ashley Petersen; Marvin Whiteley; Dianne K. Newman
Certain members of the fluorescent pseudomonads produce and secrete phenazines. These heterocyclic, redox‐active compounds are toxic to competing organisms, and the cause of these antibiotic effects has been the focus of intense research efforts. It is largely unknown, however, how pseudomonads themselves respond to – and survive in the presence of – these compounds. Using Pseudomonas aeruginosa DNA microarrays and quantitative RT‐PCR, we demonstrate that the phenazine pyocyanin elicits the upregulation of genes/operons that function in transport [such as the resistance‐nodulation‐cell division (RND) efflux pump MexGHI‐OpmD] and possibly in redox control (such as PA2274, a putative flavin‐dependant monooxygenase), and downregulates genes involved in ferric iron acquisition. Strikingly, mexGHI‐opmD and PA2274 were previously shown to be regulated by the PA14 quorum sensing network that controls the production of virulence factors (including phenazines). Through mutational analysis, we show that pyocyanin is the physiological signal for the upregulation of these quorum sensing‐controlled genes during stationary phase and that the response is mediated by the transcription factor SoxR. Our results implicate phenazines as signalling molecules in both P. aeruginosa PA14 and PAO1.
Science | 2008
Lars E. P. Dietrich; Tracy K. Teal; Alexa Price-Whelan; Dianne K. Newman
It is thought that bacteria excrete redox-active pigments as antibiotics to inhibit competitors. In Pseudomonas aeruginosa, the endogenous antibiotic pyocyanin activates SoxR, a transcription factor conserved in Proteo- and Actinobacteria. In Escherichia coli, SoxR regulates the superoxide stress response. Bioinformatic analysis coupled with gene expression studies in P. aeruginosa and Streptomyces coelicolor revealed that the majority of SoxR regulons in bacteria lack the genes required for stress responses, despite the fact that many of these organisms still produce redox-active small molecules, which indicates that redox-active pigments play a role independent of oxidative stress. These compounds had profound effects on the structural organization of colony biofilms in both P. aeruginosa and S. coelicolor, which shows that “secondary metabolites” play important conserved roles in gene expression and development.
Journal of Bacteriology | 2007
Alexa Price-Whelan; Lars E. P. Dietrich; Dianne K. Newman
The opportunistic pathogen Pseudomonas aeruginosa produces colorful, redox-active antibiotics called phenazines. Excretion of pyocyanin, the best-studied natural phenazine, is responsible for the bluish tint of sputum and pus associated with P. aeruginosa infections in humans. Although the toxicity of pyocyanin for other bacteria, as well as its role in eukaryotic infection, has been studied extensively, the physiological relevance of pyocyanin metabolism for the producing organism is not well understood. Pyocyanin reduction by P. aeruginosa PA14 is readily observed in standing liquid cultures that have consumed all of the oxygen in the medium. We investigated the physiological consequences of pyocyanin reduction by assaying intracellular concentrations of NADH and NAD+ in the wild-type strain and a mutant defective in phenazine production. We found that the mutant accumulated more NADH in stationary phase than the wild type. This increased accumulation correlated with a decrease in oxygen availability and was relieved by the addition of nitrate. Pyocyanin addition to a phenazine-null mutant also decreased intracellular NADH levels, suggesting that pyocyanin reduction facilitates redox balancing in the absence of other electron acceptors. Analysis of extracellular organic acids revealed that pyocyanin stimulated stationary-phase pyruvate excretion in P. aeruginosa PA14, indicating that pyocyanin may also influence the intracellular redox state by decreasing carbon flux through central metabolic pathways.
Journal of Bacteriology | 2013
Lars E. P. Dietrich; Chinweike Okegbe; Alexa Price-Whelan; Hassan Sakhtah; Ryan C. Hunter; Dianne K. Newman
Many microbial species form multicellular structures comprising elaborate wrinkles and concentric rings, yet the rules governing their architecture are poorly understood. The opportunistic pathogen Pseudomonas aeruginosa produces phenazines, small molecules that act as alternate electron acceptors to oxygen and nitrate to oxidize the intracellular redox state and that influence biofilm morphogenesis. Here, we show that the depth occupied by cells within colony biofilms correlates well with electron acceptor availability. Perturbations in the environmental provision, endogenous production, and utilization of electron acceptors affect colony development in a manner consistent with redox control. Intracellular NADH levels peak before the induction of colony wrinkling. These results suggest that redox imbalance is a major factor driving the morphogenesis of P. aeruginosa biofilms and that wrinkling itself is an adaptation that maximizes oxygen accessibility and thereby supports metabolic homeostasis. This type of redox-driven morphological change is reminiscent of developmental processes that occur in metazoans.
EMBO Reports | 2004
Lars E. P. Dietrich; Christian Ungermann
Protein palmitoylation or, more specifically, S ‐acylation is a reversible post‐translational lipid modification. Despite the identification of several proteins that are altered in this way, our understanding of the enzymology of this process has been hampered by the lack of well‐characterized acyltransferases. We now know of three proteins in Saccharomyces cerevisiae that promote palmitoylation: effector of Ras function (Erf2), ankyrin‐repeat‐containing protein (Akr1) and the SNARE protein Ykt6. Erf2 and Akr1 are integral membrane proteins that contain a cysteine‐rich domain and an Asp‐His‐His‐Cys motif, both of which catalyse acylation at the carboxyl terminus of their target proteins. Recently, we discovered that Ykt6 mediates the amino‐terminal acylation of the fusion protein Vac8. Even though these three proteins differ in sequence, topology, size and substrate specificity, they might function in a similar manner. In this review, we discuss these observations in the context of a potential general mechanism of acylation.
Mbio | 2013
Diana K. Morales; Nora Grahl; Chinweike Okegbe; Lars E. P. Dietrich; Nicholas J. Jacobs; Deborah A. Hogan
ABSTRACT Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. IMPORTANCE Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the study of C. albicans interactions with the bacterium Pseudomonas aeruginosa, which often coinfects with C. albicans, we have found that P. aeruginosa-produced phenazines modulate C. albicans metabolism and, through these metabolic effects, impact cellular morphology, cell-cell interactions, and biofilm formation. We suggest that the structure of C. albicans biofilms promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by phenazines inhibits biofilm development. Our findings not only provide insight into interactions between these species but also provide valuable insights into novel pathways that could lead to the development of new therapies to treat C. albicans infections. Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the study of C. albicans interactions with the bacterium Pseudomonas aeruginosa, which often coinfects with C. albicans, we have found that P. aeruginosa-produced phenazines modulate C. albicans metabolism and, through these metabolic effects, impact cellular morphology, cell-cell interactions, and biofilm formation. We suggest that the structure of C. albicans biofilms promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by phenazines inhibits biofilm development. Our findings not only provide insight into interactions between these species but also provide valuable insights into novel pathways that could lead to the development of new therapies to treat C. albicans infections.
Research in Microbiology | 2010
Itzel Ramos; Lars E. P. Dietrich; Alexa Price-Whelan; Dianne K. Newman
Some pseudomonads produce phenazines, a group of small, redox-active compounds with diverse physiological functions. In this study, we compared the phenotypes of Pseudomonas aeruginosa strain PA14 and a mutant unable to synthesize phenazines in flow cell and colony biofilms quantitatively. Although phenazine production does not impact the ability of PA14 to attach to surfaces, as has been shown for Pseudomonas chlororaphis(Maddula et al., 2006; 2008), it influences swarming motility and the surface-to-volume ratio of mature biofilms. These results indicate that phenazines affect biofilm development across a large range of scales, but in unique ways for different Pseudomonas species.
The EMBO Journal | 2001
Michael Veit; Rico Laage; Lars E. P. Dietrich; Li Wang; Christian Ungermann
Activated fatty acids stimulate budding and fusion in several cell‐free assays for vesicular transport. This stimulation is thought to be due to protein palmitoylation, but relevant substrates have not yet been identified. We now report that Vac8p, a protein known to be required for vacuole inheritance, becomes palmitoylated when isolated yeast vacuoles are incubated under conditions that allow membrane fusion. Similar requirements for Vac8p palmitoylation and vacuole fusion, the inhibition of vacuole fusion by antibodies to Vac8p and the strongly reduced fusion of vacuoles lacking Vac8p suggest that palmitoylated Vac8p is essential for homotypic vacuole fusion. Strikingly, palmitoylation of Vac8p is blocked by the addition of antibodies to Sec18p (yeast NSF) only. Consistent with this, a portion of Vac8p is associated with the SNARE complex on vacuoles, which is lost during Sec18p‐ and ATP‐dependent priming. During or after SNARE complex disassembly, palmitoylation occurs and anchors Vac8p to the vacuolar membrane. We propose that palmitoylation of Vac8p is regulated by the same machinery that controls membrane fusion.
The EMBO Journal | 2004
Lars E. P. Dietrich; Rolf Gurezka; Michael Veit; Christian Ungermann
The NSF homolog Sec18 initiates fusion of yeast vacuoles by disassembling cis‐SNARE complexes during priming. Sec18 is also required for palmitoylation of the fusion factor Vac8, although the acylation machinery has not been identified. Here we show that the SNARE Ykt6 mediates Vac8 palmitoylation and acts during a novel subreaction of vacuole fusion. This subreaction is controlled by a Sec17‐independent function of Sec18. Our data indicate that Ykt6 presents Pal‐CoA via its N‐terminal longin domain to Vac8, while transfer to Vac8s SH4 domain occurs spontaneously and not enzymatically. The conservation of Ykt6 and its localization to several organelles suggest that its acyltransferase activity may also be required in other intracellular fusion events.
Proceedings of the National Academy of Sciences of the United States of America | 2012
David A. Recinos; Matthew D. Sekedat; Adriana Hernandez; Taylor S. Cohen; Hassan Sakhtah; Alice Prince; Alexa Price-Whelan; Lars E. P. Dietrich
Evolutionary biologists have postulated that several fitness advantages may be conferred by the maintenance of duplicate genes, including environmental adaptation resulting from differential regulation. We examined the expression and physiological contributions of two redundant operons in the adaptable bacterium Pseudomonas aeruginosa PA14. These operons, phzA1-G1 (phz1) and phzA2-G2 (phz2), encode nearly identical sets of proteins that catalyze the synthesis of phenazine-1-carboxylic acid, the precursor for several phenazine derivatives. Phenazines perform diverse roles in P. aeruginosa physiology and act as virulence factors during opportunistic infections of plant and animal hosts. Although reports have indicated that phz1 is regulated by the Pseudomonas quinolone signal, factors controlling phz2 expression have not been identified, and the relative contributions of these redundant operons to phenazine biosynthesis have not been evaluated. We found that in liquid cultures, phz1 was expressed at higher levels than phz2, although phz2 showed a greater contribution to phenazine production. In colony biofilms, phz2 was expressed at high levels, whereas phz1 expression was not detectable, and phz2 was responsible for virtually all phenazine production. Analysis of mutants defective in quinolone signal synthesis revealed a critical role for 4-hydroxy-2-heptylquinoline in phz2 induction. Finally, deletion of phz2, but not of phz1, decreased lung colonization in a murine model of infection. These results suggest that differential regulation of the redundant phz operons allows P. aeruginosa to adapt to diverse environments.