Lars Englert
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lars Englert.
Science | 2014
Luis F. Gomez; Ken R. Ferguson; James P. Cryan; Camila Bacellar; Rico Mayro P. Tanyag; Curtis Jones; Sebastian Schorb; Denis Anielski; A. Belkacem; Charles Bernando; Rebecca Boll; John D. Bozek; Sebastian Carron; Gang Chen; Tjark Delmas; Lars Englert; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Robert Hartmann; Alexander Hexemer; Martin Huth; Justin Kwok; Stephen R. Leone; Jonathan H. S. Ma; Filipe R. N. C. Maia; Erik Malmerberg; Stefano Marchesini; Daniel M. Neumark; Billy K. Poon
X-raying superfluid helium droplets When physicists rotate the superfluid 4He, it develops a regular array of tiny whirlpools, called vortices. The same phenomenon should occur in helium droplets half a micrometer in size, but studying individual droplets is tricky. Gomez et al. used x-ray diffraction to deduce the shape of individual rotating droplets and image the resulting vortex patterns, which confirmed the superfluidity of the droplets. They found that superfluid droplets can host a surprising number of vortices and can rotate faster than normal droplets without disintegrating. Science, this issue p. 906 Vortex lattices inside individual helium droplets are imaged using x-ray diffraction. Helium nanodroplets are considered ideal model systems to explore quantum hydrodynamics in self-contained, isolated superfluids. However, exploring the dynamic properties of individual droplets is experimentally challenging. In this work, we used single-shot femtosecond x-ray coherent diffractive imaging to investigate the rotation of single, isolated superfluid helium-4 droplets containing ~108 to 1011 atoms. The formation of quantum vortex lattices inside the droplets is confirmed by observing characteristic Bragg patterns from xenon clusters trapped in the vortex cores. The vortex densities are up to five orders of magnitude larger than those observed in bulk liquid helium. The droplets exhibit large centrifugal deformations but retain axially symmetric shapes at angular velocities well beyond the stability range of viscous classical droplets.
Nature Communications | 2015
Gijs van der Schot; Martin Svenda; Filipe R. N. C. Maia; Max F. Hantke; Daniel P. DePonte; M. Marvin Seibert; Andrew Aquila; Joachim Schulz; Richard A. Kirian; Mengning Liang; Francesco Stellato; Bianca Iwan; Jakob Andreasson; Nicusor Timneanu; Daniel Westphal; F. Nunes Almeida; Duško Odić; Dirk Hasse; Gunilla H. Carlsson; Daniel S. D. Larsson; Anton Barty; Andrew V. Martin; S. Schorb; Christoph Bostedt; John D. Bozek; Daniel Rolles; Artem Rudenko; Sascha W. Epp; Lutz Foucar; Benedikt Rudek
There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.
Physical Review Letters | 2017
Dominik Pengel; Stefanie Kerbstadt; D. Johannmeyer; Lars Englert; Tim Bayer; Matthias Wollenhaupt
Multiphoton ionization of potassium atoms with a sequence of two counter-rotating circularly polarized femtosecond laser pulses produces vortex-shaped photoelectron momentum distributions in the polarization plane describing Archimedean spirals. The pulse sequences are produced by polarization shaping and the three-dimensional photoelectron distributions are tomographically reconstructed from velocity map imaging measurements. We show that perturbative ionization leads to electron vortices with c_{6} rotational symmetry. A change from c_{6} to c_{4} rotational symmetry of the vortices is demonstrated for nonperturbative interaction.
Structural Dynamics | 2015
Rico Mayro P. Tanyag; Charles Bernando; Curtis Jones; Camila Bacellar; Ken R. Ferguson; Denis Anielski; Rebecca Boll; Sebastian Carron; James P. Cryan; Lars Englert; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Luis F. Gomez; Robert Hartmann; Daniel M. Neumark; Daniel Rolles; Benedikt Rudek; Artem Rudenko; Katrin R. Siefermann; Joachim Ullrich; Fabian Weise; Christoph Bostedt; Oliver Gessner; Andrey F. Vilesov
Lensless x-ray microscopy requires the recovery of the phase of the radiation scattered from a specimen. Here, we demonstrate a de novo phase retrieval technique by encapsulating an object in a superfluid helium nanodroplet, which provides both a physical support and an approximate scattering phase for the iterative image reconstruction. The technique is robust, fast-converging, and yields the complex density of the immersed object. Images of xenon clusters embedded in superfluid helium droplets reveal transient configurations of quantum vortices in this fragile system.
Journal of Modern Optics | 2017
Stefanie Kerbstadt; Lars Englert; Tim Bayer; Matthias Wollenhaupt
Abstract We present a novel concept for the generation of ultrashort polarization-shaped bichromatic laser fields. The scheme utilizes a 4f polarization pulse shaper based on a liquid crystal spatial light modulator for independent amplitude and phase modulation of femtosecond laser pulses. By choice of either a conventional (p) or a composite (p-s) polarizer in the Fourier plane, the shaper setup enables the generation of parallel linearly and orthogonal linearly polarized bichromatic fields. Additional use of a wave plate behind the setup yields co-rotating and counter-rotating circularly polarized bichromatic fields. The scheme allows to independently control the spectral amplitude, phase and polarization profile of the output fields, offering an enormous versatility of bichromatic waveforms.
Scientific Data | 2016
Gijs van der Schot; Martin Svenda; Filipe R. N. C. Maia; Max F. Hantke; Daniel P. DePonte; M. Marvin Seibert; Andrew Aquila; Joachim Schulz; Richard A. Kirian; Mengning Liang; Francesco Stellato; Sadia Bari; Bianca Iwan; Jakob Andreasson; Nicusor Timneanu; Johan Bielecki; Daniel Westphal; Francisca Nunes de Almeida; Duško Odić; Dirk Hasse; Gunilla H. Carlsson; Daniel S. D. Larsson; Anton Barty; Andrew V. Martin; Sebastian Schorb; Christoph Bostedt; John D. Bozek; Sebastian Carron; Ken R. Ferguson; Daniel Rolles
Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.
Proceedings of SPIE | 2011
Nils Kimmel; Robert Andritschke; Lars Englert; Sascha W. Epp; A. Hartmann; Raimo Hartmann; G. Hauser; Peter Holl; Ivan Ordavo; R. Richter; L. Strüder; Joachim Ullrich
Measurement campaigns of the Max-Planck Advanced Study Group (ASG) in cooperation with the Center for Free Electron Laser Science (CFEL) at DESY-FLASH and SLAC-LCLS have established pnCCDs as universal photon imaging spectrometers in the energy range from 90 eV to 2 keV. In the CFEL-ASG multi purpose chamber (CAMP), pnCCD detector modules are an integral part of the design with the ability to detect photons at very small scattering angles. In order to fully exploit the spectroscopic and intensity imaging capability of pnCCDs, it is essentially important to translate the unprocessed raw data into units of photon counts for any given position on the detection area. We have studied the performance of pnCCDs in FEL experiments and laboratory test setups for the range of signal intensities from a few X-ray photons per signal frame to 100 or more photons with an energy of 2 keV per pixel. Based on these measurement results, we were able to characterize the response of pnCCDs over the experimentally relevant photon energy and intensity range. The obtained calibration results are directly relevant for the physics data analysis. The accumulated knowledge of the detector performance was implemented in guidelines for detector calibration methods which are suitable for the specific requirements in photon science experiments at Free Electron Lasers. We discuss the achievable accuracy of photon energy and photon count measurements before and after the application of calibration data. Charge spreading due to illumination of small spots with high photon rates is discussed with respect to the charge handling capacity of a pixel and the effect of the charge spreading process on the resulting signal patterns.
Scientific Data | 2018
Kanupriya Pande; Jeffrey J. Donatelli; Erik Malmerberg; Lutz Foucar; Billy K. Poon; Markus Sutter; Sabine Botha; Shibom Basu; R. Bruce Doak; Katerina Dörner; Sascha W. Epp; Lars Englert; Raimund Fromme; Elisabeth Hartmann; Robert Hartmann; Guenter Hauser; Johan Hattne; Ahmad Hosseinizadeh; Stephan Kassemeyer; Lukas Lomb; Sebastian F. Carron Montero; Andreas Menzel; Daniel Rolles; Artem Rudenko; M. Marvin Seibert; Raymond G. Sierra; Peter Schwander; A. Ourmazd; Petra Fromme; Nicholas K. Sauter
Fluctuation X-ray scattering (FXS) is an emerging experimental technique in which solution scattering data are collected using X-ray exposures below rotational diffusion times, resulting in angularly anisotropic X-ray snapshots that provide several orders of magnitude more information than traditional solution scattering data. Such experiments can be performed using the ultrashort X-ray pulses provided by a free-electron laser source, allowing one to collect a large number of diffraction patterns in a relatively short time. Here, we describe a test data set for FXS, obtained at the Linac Coherent Light Source, consisting of close to 100u2009000 multi-particle diffraction patterns originating from approximately 50 to 200 Paramecium Bursaria Chlorella virus particles per snapshot. In addition to the raw data, a selection of high-quality pre-processed diffraction patterns and a reference SAXS profile are provided.
Physical Review B | 2016
Curtis Jones; Charles Bernando; Rico Mayro P. Tanyag; Camila Bacellar; Ken R. Ferguson; Luis F. Gomez; Denis Anielski; A. Belkacem; Rebecca Boll; John D. Bozek; Sebastian Carron; James P. Cryan; Lars Englert; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Robert Hartmann; Daniel M. Neumark; Daniel Rolles; A. Rudenko; Katrin R. Siefermann; Fabian Weise; Benedikt Rudek; Felix Sturm; Joachim H. Ullrich; Christoph Bostedt; Oliver Gessner; Andrey F. Vilesov
Physical Review A | 2017
Dominik Pengel; Stefanie Kerbstadt; Lars Englert; Tim Bayer; Matthias Wollenhaupt