Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars F. Westblade is active.

Publication


Featured researches published by Lars F. Westblade.


Nature | 2013

High-level semi-synthetic production of the potent antimalarial artemisinin

Chris J. Paddon; Patrick J. Westfall; Douglas J. Pitera; Kirsten R. Benjamin; K. Fisher; Derek McPhee; Michael D. Leavell; A. Tai; A. Main; Diana Eng; D. R. Polichuk; K. H. Teoh; D. W. Reed; T. Treynor; Jacob R. Lenihan; H. Jiang; M. Fleck; S. Bajad; G. Dang; D. Dengrove; Don Diola; G. Dorin; K. W. Ellens; Scott Fickes; J. Galazzo; S. P. Gaucher; T. Geistlinger; R. Henry; M. Hepp; Tizita Horning

In 2010 there were more than 200 million cases of malaria, and at least 655,000 deaths. The World Health Organization has recommended artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated malaria caused by the parasite Plasmodium falciparum. Artemisinin is a sesquiterpene endoperoxide with potent antimalarial properties, produced by the plant Artemisia annua. However, the supply of plant-derived artemisinin is unstable, resulting in shortages and price fluctuations, complicating production planning by ACT manufacturers. A stable source of affordable artemisinin is required. Here we use synthetic biology to develop strains of Saccharomyces cerevisiae (baker’s yeast) for high-yielding biological production of artemisinic acid, a precursor of artemisinin. Previous attempts to produce commercially relevant concentrations of artemisinic acid were unsuccessful, allowing production of only 1.6 grams per litre of artemisinic acid. Here we demonstrate the complete biosynthetic pathway, including the discovery of a plant dehydrogenase and a second cytochrome that provide an efficient biosynthetic route to artemisinic acid, with fermentation titres of 25 grams per litre of artemisinic acid. Furthermore, we have developed a practical, efficient and scalable chemical process for the conversion of artemisinic acid to artemisinin using a chemical source of singlet oxygen, thus avoiding the need for specialized photochemical equipment. The strains and processes described here form the basis of a viable industrial process for the production of semi-synthetic artemisinin to stabilize the supply of artemisinin for derivatization into active pharmaceutical ingredients (for example, artesunate) for incorporation into ACTs. Because all intellectual property rights have been provided free of charge, this technology has the potential to increase provision of first-line antimalarial treatments to the developing world at a reduced average annual price.


European Journal of Clinical Microbiology & Infectious Diseases | 2012

Next-generation and whole-genome sequencing in the diagnostic clinical microbiology laboratory.

W. M. Dunne; Lars F. Westblade; Bradley Ford

The identification and/or prediction of the antimicrobial resistance of microorganisms in clinical materials solely by molecular means in the diagnostic microbiology laboratory is not novel. However, the ability to sequence multitudes of bacterial genomes and deliver and interpret the resultant sequence information in near “real-time” is the basis of next-generation sequencing (NGS) technologies. There have been numerous applications and successes of NGS applications in the clinical and public health domain. However, none have, as yet, delivered perhaps the most sought after application, i.e., the generation of microbial sequence data for “real-time” patient management. In this review, we discuss the use of NGS and whole-genome sequencing (WGS) of microorganisms as a logical next step for the routine diagnosis of infection and the prediction of antimicrobial susceptibility in the clinical microbiology laboratory.


Journal of Clinical Microbiology | 2013

Multicenter Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Gram-Positive Aerobic Bacteria

Jenna Rychert; Carey-Ann D. Burnham; Maureen Bythrow; Omai B. Garner; Christine C. Ginocchio; Rebecca Jennemann; Michael A. Lewinski; Ryhana Manji; A. Brian Mochon; Gary W. Procop; Sandra S. Richter; Linda Sercia; Lars F. Westblade; Mary Jane Ferraro; John A. Branda

ABSTRACT Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF) is gaining momentum as a tool for bacterial identification in the clinical microbiology laboratory. Compared with conventional methods, this technology can more readily and conveniently identify a wide range of organisms. Here, we report the findings from a multicenter study to evaluate the Vitek MS v2.0 system (bioMérieux, Inc.) for the identification of aerobic Gram-positive bacteria. A total of 1,146 unique isolates, representing 13 genera and 42 species, were analyzed, and results were compared to those obtained by nucleic acid sequence-based identification as the reference method. For 1,063 of 1,146 isolates (92.8%), the Vitek MS provided a single identification that was accurate to the species level. For an additional 31 isolates (2.7%), multiple possible identifications were provided, all correct at the genus level. Mixed-genus or single-choice incorrect identifications were provided for 18 isolates (1.6%). Although no identification was obtained for 33 isolates (2.9%), there was no specific bacterial species for which the Vitek MS consistently failed to provide identification. In a subset of 463 isolates representing commonly encountered important pathogens, 95% were accurately identified to the species level and there were no misidentifications. Also, in all but one instance, the Vitek MS correctly differentiated Streptococcus pneumoniae from other viridans group streptococci. The findings demonstrate that the Vitek MS system is highly accurate for the identification of Gram-positive aerobic bacteria in the clinical laboratory setting.


Journal of Clinical Microbiology | 2013

Multicenter Study Evaluating the Vitek MS System for Identification of Medically Important Yeasts

Lars F. Westblade; Rebecca Jennemann; John A. Branda; Maureen Bythrow; Mary Jane Ferraro; Omai B. Garner; Christine C. Ginocchio; Michael A. Lewinski; Ryhana Manji; A. Brian Mochon; Gary W. Procop; Sandra S. Richter; Jenna Rychert; Linda Sercia; Carey-Ann D. Burnham

ABSTRACT The optimal management of fungal infections is correlated with timely organism identification. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) is revolutionizing the identification of yeasts isolated from clinical specimens. We present a multicenter study assessing the performance of the Vitek MS system (bioMérieux) in identifying medically important yeasts. A collection of 852 isolates was tested, including 20 Candida species (626 isolates, including 58 C. albicans, 62 C. glabrata, and 53 C. krusei isolates), 35 Cryptococcus neoformans isolates, and 191 other clinically relevant yeast isolates; in total, 31 different species were evaluated. Isolates were directly applied to a target plate, followed by a formic acid overlay. Mass spectra were acquired using the Vitek MS system and were analyzed using the Vitek MS v2.0 database. The gold standard for identification was sequence analysis of the D2 region of the 26S rRNA gene. In total, 823 isolates (96.6%) were identified to the genus level and 819 isolates (96.1%) were identified to the species level. Twenty-four isolates (2.8%) were not identified, and five isolates (0.6%) were misidentified. Misidentified isolates included one isolate of C. albicans (n = 58) identified as Candida dubliniensis, one isolate of Candida parapsilosis (n = 73) identified as Candida pelliculosa, and three isolates of Geotrichum klebahnii (n = 6) identified as Geotrichum candidum. The identification of clinically relevant yeasts using MS is superior to the phenotypic identification systems currently employed in clinical microbiology laboratories.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center

Andrey Feklistov; Vladimir Mekler; Qiaorong Jiang; Lars F. Westblade; Herbert Irschik; Rolf Jansen; Arkady Mustaev; Seth A. Darst; Richard H. Ebright

Rifamycin antibacterial agents inhibit bacterial RNA polymerase (RNAP) by binding to a site adjacent to the RNAP active center and preventing synthesis of RNA products >2–3 nt in length. Recently, Artsimovitch et al. [(2005) Cell 122:351–363] proposed that rifamycins function by allosteric modulation of binding of Mg2+ to the RNAP active center and presented three lines of biochemical evidence consistent with this proposal. Here, we show that rifamycins do not affect the affinity of binding of Mg2+ to the RNAP active center, and we reassess the three lines of biochemical evidence, obtaining results not supportive of the proposal. We conclude that rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNAP active center.


European Journal of Clinical Microbiology & Infectious Diseases | 2013

Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system.

Sandra S. Richter; Linda Sercia; John A. Branda; Carey-Ann D. Burnham; Maureen Bythrow; Mary Jane Ferraro; Omai B. Garner; Christine C. Ginocchio; Rebecca Jennemann; Michael A. Lewinski; Ryhana Manji; A. B. Mochon; Jenna Rychert; Lars F. Westblade; Gary W. Procop

This multicenter study evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry identifications from the VITEK MS system (bioMérieux, Marcy l’Etoile, France) for Enterobacteriaceae typically encountered in the clinical laboratory. Enterobacteriaceae isolates (n = 965) representing 17 genera and 40 species were analyzed on the VITEK MS system (database v2.0), in accordance with the manufacturer’s instructions. Colony growth (≤72 h) was applied directly to the target slide. Matrix solution (α-cyano-4-hydroxycinnamic acid) was added and allowed to dry before mass spectrometry analysis. On the basis of the confidence level, the VITEK MS system provided a species, genus only, or no identification for each isolate. The accuracy of the mass spectrometric identification was compared to 16S rRNA gene sequencing performed at MIDI Labs (Newark, DE). Supplemental phenotypic testing was performed at bioMérieux when necessary. The VITEK MS result agreed with the reference method identification for 96.7 % of the 965 isolates tested, with 83.8 % correct to the species level and 12.8 % limited to a genus-level identification. There was no identification for 1.7 % of the isolates. The VITEK MS system misidentified 7 isolates (0.7 %) as different genera. Three Pantoea agglomerans isolates were misidentified as Enterobacter spp. and single isolates of Enterobacter cancerogenus, Escherichia hermannii, Hafnia alvei, and Raoultella ornithinolytica were misidentified as Klebsiella oxytoca, Citrobacter koseri, Obesumbacterium proteus, and Enterobacter aerogenes, respectively. Eight isolates (0.8 %) were misidentified as a different species in the correct genus. The VITEK MS system provides reliable mass spectrometric identifications for Enterobacteriaceae.


Clinical Microbiology and Infection | 2014

Multi-centre evaluation of mass spectrometric identification of anaerobic bacteria using the VITEK® MS system

Omai B. Garner; A. B. Mochon; John A. Branda; C.-A. Burnham; Maureen Bythrow; Mary Jane Ferraro; Christine C. Ginocchio; Rebecca Jennemann; Ryhana Manji; Gary W. Procop; Sandra S. Richter; Jenna Rychert; Linda Sercia; Lars F. Westblade; Michael A. Lewinski

Accurate and timely identification of anaerobic bacteria is critical to successful treatment. Classic phenotypic methods for identification require long turnaround times and can exhibit poor species level identification. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an identification method that can provide rapid identification of anaerobes. We present a multi-centre study assessing the clinical performance of the VITEK(®) MS in the identification of anaerobic bacteria. Five different test sites analysed a collection of 651 unique anaerobic isolates comprising 11 different genera. Multiple species were included for several of the genera. Briefly, anaerobic isolates were applied directly to a well of a target plate. Matrix solution (α-cyano-4-hydroxycinnamic acid) was added and allowed to dry. Mass spectra results were generated with the VITEK(®) MS, and the comparative spectral analysis and organism identification were determined using the VITEK(®) MS database 2.0. Results were confirmed by 16S rRNA gene sequencing. Of the 651 isolates analysed, 91.2% (594/651) exhibited the correct species identification. An additional eight isolates were correctly identified to genus level, raising the rate of identification to 92.5%. Genus-level identification consisted of Actinomyces, Bacteroides and Prevotella species. Fusobacterium nucleatum, Actinomyces neuii and Bacteroides uniformis were notable for an increased percentage of no-identification results compared with the other anaerobes tested. VITEK(®) MS identification of clinically relevant anaerobes is highly accurate and represents a dramatic improvement over other phenotypic methods in accuracy and turnaround time.


Nucleic Acids Research | 2010

Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction

Lars F. Westblade; Elizabeth A. Campbell; Chirangini Pukhrambam; Julio C. Padovan; Bryce E. Nickels; Valérie Lamour; Seth A. Darst

The transcription-repair coupling factor (TRCF, the product of the mfd gene) is a widely conserved bacterial protein that mediates transcription-coupled DNA repair. TRCF uses its ATP-dependent DNA translocase activity to remove transcription complexes stalled at sites of DNA damage, and stimulates repair by recruiting components of the nucleotide excision repair pathway to the site. A protein/protein interaction between TRCF and the β-subunit of RNA polymerase (RNAP) is essential for TRCF function. CarD (also called CdnL), an essential regulator of rRNA transcription in Mycobacterium tuberculosis, shares a homologous RNAP interacting domain with TRCF and also interacts with the RNAP β-subunit. We determined the 2.9-Å resolution X-ray crystal structure of the RNAP interacting domain of TRCF complexed with the RNAP-β1 domain, which harbors the TRCF interaction determinants. The structure reveals details of the TRCF/RNAP protein/protein interface, providing a basis for the design and interpretation of experiments probing TRCF, and by homology CarD, function and interactions with the RNAP.


Nature | 2012

Initiation of transcription-coupled repair characterized at single-molecule resolution

Kévin Howan; Abigail J. Smith; Lars F. Westblade; Nicolas Joly; Wilfried Grange; Sylvain Zorman; Seth A. Darst; Nigel J. Savery; Terence R. Strick

Transcription-coupled DNA repair uses components of the transcription machinery to identify DNA lesions and initiate their repair. These repair pathways are complex, so their mechanistic features remain poorly understood. Bacterial transcription-coupled repair is initiated when RNA polymerase stalled at a DNA lesion is removed by Mfd, an ATP-dependent DNA translocase. Here we use single-molecule DNA nanomanipulation to observe the dynamic interactions of Escherichia coli Mfd with RNA polymerase elongation complexes stalled by a cyclopyrimidine dimer or by nucleotide starvation. We show that Mfd acts by catalysing two irreversible, ATP-dependent transitions with different structural, kinetic and mechanistic features. Mfd remains bound to the DNA in a long-lived complex that could act as a marker for sites of DNA damage, directing assembly of subsequent DNA repair factors. These results provide a framework for considering the kinetics of transcription-coupled repair in vivo, and open the way to reconstruction of complete DNA repair pathways at single-molecule resolution.


Molecular Microbiology | 1999

REPRESSION AT A DISTANCE BY THE GLOBAL REGULATOR KORB OF PROMISCUOUS INCP PLASMIDS

Grazyna Jagura-Burdzy; Donia P. Macartney; Malgorzata Zatyka; Lesley Cunliffe; Dunstan Cooke; Cerys C. Huggins; Lars F. Westblade; Farhat L. Khanim; Christopher M. Thomas

KorB protein (358 amino acids) binds to 12 highly conserved sequences on the RK2 genome and co‐ordinates the expression of at least five operons encoding genes for stable inheritance and plasmid transfer. KorB represses the trfA, korA and klaA promoters where it binds 4 bp upstream of the −35 region (class I KorB operators, OB). We show here that KorB on its own can also repress the trbA, trbB, kfrA and kleA promoters where OB is between 80 and 189 bp away from the transcription start point (class II operator). A C‐terminal deletion of 17 amino acids resulted in the loss of KorBs ability to repress through class II operator but not through class I operator. This deletion reduced multimerization of His6‐tailed KorB protein in vitro and greatly reduced binding specificity for fragments containing OB sequences. At the trbBp region, where OB9 lies 189 bp upstream of the transcription start point, mutagenesis of a proposed secondary binding site overlapping the trbBp−35 region had no effect on the ability of KorB to repress trbBp. Nevertheless, gel retardation analysis showed that KorB binding is promoted by sequences upstream and downstream of OB9 and that KorB can form higher order complexes on DNA. However, DNase I footprinting suggested that RNA polymerase may interact directly with KorB bound at OB9 and implied that contacts between these proteins could be responsible for the action of KorB at a distance.

Collaboration


Dive into the Lars F. Westblade's collaboration.

Top Co-Authors

Avatar

Carey-Ann D. Burnham

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maureen Bythrow

North Shore-LIJ Health System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omai B. Garner

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge