Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Gille is active.

Publication


Featured researches published by Lars Gille.


Cell Metabolism | 2012

The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism.

Arvand Haschemi; Paul Kosma; Lars Gille; Charles R. Evans; Charles F. Burant; Philipp Starkl; Bernhard Knapp; Robert Haas; Johannes A. Schmid; Christoph Jandl; Shahzada Amir; Gert Lubec; Jaehong Park; Harald Esterbauer; Martin Bilban; Leonardo Brizuela; J. Andrew Pospisilik; Leo E. Otterbein; Oswald Wagner

Summary Immune cells are somewhat unique in that activation responses can alter quantitative phenotypes upwards of 100,000-fold. To date little is known about the metabolic adaptations necessary to mount such dramatic phenotypic shifts. Screening for novel regulators of macrophage activation, we found nonprotein kinases of glucose metabolism among the most enriched classes of candidate immune modulators. We find that one of these, the carbohydrate kinase-like protein CARKL, is rapidly downregulated in vitro and in vivo upon LPS stimulation in both mice and humans. Interestingly, CARKL catalyzes an orphan reaction in the pentose phosphate pathway, refocusing cellular metabolism to a high-redox state upon physiological or artificial downregulation. We find that CARKL-dependent metabolic reprogramming is required for proper M1- and M2-like macrophage polarization and uncover a rate-limiting requirement for appropriate glucose flux in macrophage polarization.


Free Radical Biology and Medicine | 1997

Analyses of the molecular mechanism of adriamycin-induced cardiotoxicity

Lars Gille; Hans Nohl

The molecular basis of the adriamycin (AQ)-dependent development of cardiotoxicity is still far from being clear. In contrast to our incomplete understanding of the organ-specific mechanism mitochondria are unequivocally accepted as the locus where the molecular disorder is triggered. A growing number of reports intimate the establishment of unbalanced oxygen activation through heart mitochondria in the presence of anthraquinones. In fact, in contrast to liver mitochondria, isolated heart mitochondria have been unequivocally shown to shuttle single electrons to AQ, giving rise to O2.- formation by autoxidizing AQ. semiquinones. Earlier we have demonstrated the involvement of the exogenous NADH dehydrogenase in this deleterious electron deviation from the respiratory chain. This enzyme that is associated with complex I of the respiratory chain catalyzes the oxidation of cytosolic NADH. AQ activation through isolated heart mitochondria was reported to require the external addition of NADH, suggesting a flux of reducing equivalents from NADH to AQ in the cytosol. Unlike heart mitochondria, intact liver mitochondria, which are lacking this NADH-related pathway of reducing equivalents from the cytosol to the respiratory chain, cannot be made to activate AQ to semiquinones by NADH or any other substrate of respiration. It appears, therefore, that the exogenous NADH dehydrogenase of heart mitochondria exerts a key function in the myocardial toxicogenesis of anthraquinones via oxygen activation through semireduced AQ. Assessing the toxicological significance of the exogenous NADH dehydrogenase in AQ-related heart injury requires analysis of reaction products and their impact on vital bioenergetic functions, such as energy gain from the oxidation of respiratory substrates. We have applied ESR technique to analyze the identity and possible interactions of radical species emerging from NADH-respiring heart mitochondria in the presence of AQ. The following metabolic steps occur causing depression of energy metabolism in the cardiac tissue. After one-electron transfer to the parent hydrophilic anthraquinone molecule destabilization of the radical formed causes cleavage of the sugar residue. Accumulation of the lipophilic aglycone metabolite in the inner mitochondrial membrane diverts electrons from the regular pathway to electron acceptors out of sequence such as H2O2. HO. radicals are formed and affect the functional integrity of energy-linked respiration. The key and possibly initiating role of the exogenous NADH dehydrogenase of cardiac mitochondria in this reaction pathway provides a rationale to explain the selective cardiotoxic potency of the cytostatic anthraquinone glycosides.


Free Radical Biology and Medicine | 1996

Conditions allowing redox-cycling ubisemiquinone in mitochondria to establish a direct redox couple with molecular oxygen

Hans Nohl; Lars Gille; Katrin Schönheit; Yang Liu

The present investigation seeks to elucidate the molecular mechanism responsible of the transformation of redox-cycling ubiquinone (UQ) from a save electron carrier to an O2.- generator as observed in toluene-treated mitochondria as well as in mitochondria exposed to conditions of organ ischemia/reperfusion. Starting from the earlier finding that for thermodynamic grounds autoxidation of ubisemiquinone (SQ.-) requires the accessibility of protons, two possibilities were considered: a) protons from the aqueous phase may penetrate into the phospholipid bilayer and react with SQ.- due to a decreased hydrophobicity of the membrane, b) the physical state of the membrane remains unchanged while the binding of redox-cycling UQ is changed such that SQ.- will come into contact with the aqueous phase in the polar head group section. Spin probes were used to follow changes of the physical order of phospholipids of the inner mitochondrial membrane. Binding changes of mitochondrial SQ.- were assessed from power saturation experiments and spin-spin interactions with a Cr3+ salt of the aqueous phase were studied to recognize orientation changes via the polar head group section of the membrane. Our results show that autoxidation of SQ.- occurs in two different ways. In the case of membrane insertion of toluene, the physical property of the membrane was affected such that protons could penetrate and allow SQ.- to undergo autoxidation. In contrast, mitochondrial respiration of cytosolic NADH accumulating during ischemia involves a low saturating SQ.- species that readily autoxidizes due to its spatial orientation close to the aqueous face of the membrane. We conclude from these observations that in line with thermodynamics autoxidation of SQ.- in mitochondria requires protons that normally have no access.


Free Radical Research | 2002

Mitochondrial Superoxide Radical Formation is Controlled by Electron Bifurcation to the High and Low Potential Pathways

Katrin Staniek; Lars Gille; Andrey V. Kozlov; Hans Nohl

The generation of oxygen radicals in biological systems and their sites of intracellular release have been subject of numerous studies in the last decades. Based on these studies mitochondria are considered to be the major source of intracellular oxygen radicals. Although this finding is more or less accepted, the mechanism of univalent oxygen reduction in mitochondria is still obscure. One of the most critical electron transfer steps in the respiratory chain is the electron bifurcation at the cytochrome bc 1 complex. Recent studies with genetically mutated mitochondria have made it clear that electron bifurcation from ubiquinol to the cytochrome bc 1 complex requires the free mobility of the head domain of the Rieske iron-sulfur protein. On the other hand, it has been long known that inhibition of electron bifurcation by antimycin A causes leakage of single electrons to dioxygen, which results in the release of superoxide radicals. These findings lead us to study whether hindrance of the interaction of ubiquinol with the cytochrome bc 1 complex is the regulator of single electron diversion to oxygen. Hindrance of electron bifurcation was observed following alterations of the physical state of membrane phospholipids in which the cytochrome bc 1 complex is inserted. Irrespective of whether the fluidity of the membrane lipids was elevated or decreased, electron flow rates to the Rieske iron-sulfur protein were drastically reduced. Concomitantly superoxide radicals were released from these mitochondria, strongly suggesting an effect on the mobility of the head domain of the Rieske iron-sulfur protein. This revealed the involvement of the ubiquinol cytochrome bc 1 redox couple in mitochondrial superoxide formation. The regulator, which controls leakage of electrons to oxygen, appears to be the electron-branching activity of the cytochrome bc 1 complex.


Journal of Biological Inorganic Chemistry | 2012

Mechanisms underlying reductant-induced reactive oxygen species formation by anticancer copper(II) compounds

Christian R. Kowol; Petra Heffeter; Walter Miklos; Lars Gille; Robert Trondl; Loredana Cappellacci; Walter Berger; Bernhard K. Keppler

Intracellular generation of reactive oxygen species (ROS) via thiol-mediated reduction of copper(II) to copper(I) has been assumed as the major mechanism underlying the anticancer activity of copper(II) complexes. The aim of this study was to compare the anticancer potential of copper(II) complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; currently in phase II clinical trials) and its terminally dimethylated derivative with that of 2-formylpyridine thiosemicarbazone and that of 2,2′-bipyridyl-6-carbothioamide. Experiments on generation of oxidative stress and the influence of biologically relevant reductants (glutathione, ascorbic acid) on the anticancer activity of the copper complexes revealed that reductant-dependent redox cycling occurred mainly outside the cells, leading to generation and dismutation of superoxide radicals resulting in cytotoxic amounts of H2O2. However, without extracellular reductants only weak intracellular ROS generation was observed at IC50 levels, suggesting that cellular thiols are not involved in copper-complex-induced oxidative stress. Taken together, thiol-induced intracellular ROS generation might contribute to the anticancer activity of copper thiosemicarbazone complexes but is not the determining factor.


Pharmaceutical Research | 2011

Mitochondria and Trypanosomatids: Targets and Drugs

Lianet Monzote Fidalgo; Lars Gille

ABSTRACTThe family Trypanosomatidae, flagellated parasitic protozoa, is responsible for important infectious diseases in humans: sleeping sickness, Chagas diseases and leishmaniasis. Currently, development of effective vaccines against these parasites remains an unrealized goal, and clinical management is based on chemotherapeutics. Cost, toxicity and resistance problems of conventional drugs result in an urgent need to identify and develop new therapeutic alternatives. The sound understanding of parasites, biology is key for identifying novel lead structures and new drug targets. This article reviews current knowledge about mitochondrial drug targets and existing drugs against Trypanosoma and Leishmania. In the past, several targets in trypanosomatid mitochondria (electron transport chain, kDNA and topoisomerases, tRNA import and fatty acid synthesis) have been identified. It has been suggested that inhibition of certain targets is involved in triggering apoptosis by impairment of mitochondrial membrane potential and/or production of reactive oxygen species. The inhibitory mechanism of approved drugs, such as pentamidine, nifurtimox, artemisinin and atovaquone, is described in parallel with others products from preclinical studies. In spite of the large amount of genetic information, the analysis of the phenotype of the trypanosomatid mitochondrion in different life stages will remain a useful tool to design new active compounds with selective toxicity against these parasites.


Free Radical Biology and Medicine | 1998

Antioxidant-derived prooxidant formation from ubiquinol

Hans Nohl; Lars Gille; Andrey V. Kozlov

Ubiquinol (QH2) is increasingly used as antioxidant for the treatment of a variety of diseases and the modulation of biological aging; however, the biological significance of secondary reaction products has been disregarded so far. Our studies on the antioxidant activity of ubiquinol in peroxidizing lipid membranes demonstrate the existence of ubisemiquinone (SQ*) as the first reaction product of ubiquinol. A fraction of SQ* derived from the antioxidative activity of QH2 was detected in the outer section of the membrane bordering the aqueous phase. This localization allows an access of protons and water from the aqueous phase to SQ* a prerequisite earlier found to trigger autoxidation. Superoxide radicals emerging from this fraction of autoxidizing SQ* form H2O2 by spontaneous dismutation. SQ* not involved in autoxidation may react with H2O2. Transfer of the odd electron to H2O2 resulted in HO* and HO- formation by homolytic cleavage. An analogous reaction was also possible with lipid hydroperoxides which accumulate in biological membranes during lipid peroxidation. The reaction products emerging from this reaction were alkoxyl radicals. Both HO* and alkoxyl radicals are strong initiators and promoters of lipid peroxidation. Indirect evidence of the existence and prooxidative activities of these secondary reaction products came from comparative studies with vitamin E. While in the absence of other reactants, QH2 and vitamin E were equally effective in scavenging lipid radicals; the radical protecting activity of QH2 was found to be significantly lower as compared to vitamin E when these antioxidants operate in peroxidizing lipid membranes. This discrepancy reveals that the antioxidative activity of coenzyme Q is compulsorily linked to the formation of split products counteracting the membrane protective effect of this natural antioxidant.


Toxicology and Applied Pharmacology | 2009

Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria.

Lianet Monzote; Werner Stamberg; Katrin Staniek; Lars Gille

Chenopodium ambrosioides have been used for centuries in the Americas as a popular remedy for parasitic diseases. The essential oil of this plant possesses anthelmintic activity and is still used in some regions to treat parasitosis and leishmaniasis. However, the Chenopodium oil caused also some fatalities, leading to its commercial disuse. In this work, we studied the mechanism of toxicity of the essential oil and its major pure ingredients (carvacrol, caryophyllene oxide, and ascaridole, which was synthesized from alpha-terpinene) with respect to mammalian cells and mitochondria. We observed that all products, but especially caryophyllene oxide, inhibited the mitochondrial electron transport chain. This effect for carvacrol and caryophyllene oxide was mediated via direct complex I inhibition. Without Fe2+, ascaridole was less toxic to mammalian mitochondria than other major ingredients. However, evidence on the formation of carbon-centered radicals in the presence of Fe2+ was obtained by ESR spin-trapping. Furthermore, it was shown that Fe2+ potentiated the toxicity of ascaridole on oxidative phosphorylation of rat liver mitochondria. The increase of the alpha-tocopherol quinone/alpha-tocopherol ratio under these conditions indicated the initiation of lipid peroxidation by Fe2+-mediated ascaridole cleavage. Further ESR spin-trapping experiments demonstrated that in addition to Fe2+, reduced hemin, but not mitochondrial cytochrome c can activate ascaridole, explaining why ascaridole in peritoneal macrophages from BALB/c mice exhibited a higher toxicity than in isolated mitochondria.


Food and Chemical Toxicology | 2003

Induction of lipid peroxidation in biomembranes by dietary oil components

Natalia Udilova; Daniela Jurek; Brigitte Marian; Lars Gille; Rolf Schulte-Hermann; Hans Nohl

Prooxidant formation and resulting lipid peroxidation are supposed to be involved in the pathogenesis of various diseases including cancer. Cancer risk is possibly influenced by the composition of diet with high intake of fat and red meat being harmful and high consumption of fruits and vegetables being protective. Since dietary oils may contain potential prooxidants, the aim of the present study was to prove (i) whether oxidative stress in biomembranes may be induced by dietary oils and if, (ii) which impact it has on the viability and proliferation of cultured colon (carcinoma) cells. Lipid hydroperoxide content in dietary oils increased after heating. Linoleic acid hydroperoxide (LOOH) and/or oils with different hydroperoxide contents induced lipid peroxidation in liposomes, erythrocyte ghosts and colon cells. Upon incubation with liposomes, both LOOH and heated oil induced lipid peroxidation only in the presence of iron and ascorbate. LOOH was sufficient to start lipid peroxidation of erythrocyte ghosts. LOOH incorporates into the lipid bilayer decreasing membrane fluidity and initiating lipid peroxidation in the lipid phase. When cultured cells (IEC18 intestinal epithelial cells, SW480 and HT29/HI1 colon carcinoma cells) were exposed to LOOH, they responded by cell death both via apoptosis and necrosis. Cells with higher degree of membrane unsaturation were more susceptible and antioxidants (vitamin E and selenite) were protective indicating the involvement of oxidative stress. Thus, peroxidation of biomembranes can be initiated by lipid hydroperoxides from heated oils. Dietary consumption of heated oils may lead to oxidative damage and to cell death in the colon. This may contribute to the enhanced risk of colon cancer due to regenerative cell proliferation.


Redox Report | 2003

Are mitochondria a spontaneous and permanent source of reactive oxygen species

Hans Nohl; Lars Gille; Andrey V. Kozlov; Katrin Staniek

Abstract The bioenergetic properties of mitochondria in combination with the high turnover rate of dioxygen qualify these organelles for the formation of reactive oxygen species (ROS). The assumption that mitochondria are the major intracellular source of ROS was essentially based on in vitro experiments with isolated mitochondria. The transfer of these data to the living cell may, however, be incorrect. Artefacts due to the preparation procedure or inadequate detection methods of ROS may lead to false positive results. Inhomogeneous results were found to be due to an interaction of the detection system with components of the respiratory chain which could be avoided by a recently developed non-invasive method. One of the most critical electron transfer steps in the respiratory chain is the electron bifurcation from ubiquinol to the cytochrome bc 1 complex. This electron bifurcation requires the free mobility of the head domain of the Rieske iron-sulfur protein. Inhibition of electron bifurcation by antimycin A causes leakage of single electrons to oxygen which results in the release of ROS. Hindrance of electron bifurcation was also observed following alterations of the physical state of membrane phospholipids in which the cytochrome bc 1 complex is inserted. Irrespective of whether the fluidity of the membrane was elevated or decreased, electron flow rates to the Rieske iron-sulfur protein were drastically reduced. Concomitantly superoxide radicals were released from these mitochondria, strongly suggesting the involvement of the ubiquinol/cytochrome bc 1 redox couple in this process.

Collaboration


Dive into the Lars Gille's collaboration.

Top Co-Authors

Avatar

Hans Nohl

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Katrin Staniek

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Andrey V. Kozlov

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Lianet Monzote

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Wolfgang Gregor

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Soheyl Bahrami

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Susanne Haindl

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Heinz Redl

University of Veterinary Medicine Vienna

View shared research outputs
Top Co-Authors

Avatar

Werner Stamberg

University of Veterinary Medicine Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge