Lars Hecht
Braunschweig University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lars Hecht.
IEEE\/ASME Journal of Microelectromechanical Systems | 2016
Martin Schwerter; Daniel Gräbner; Lars Hecht; Anke Vierheller; Monika Leester-Schädel; Andreas Dietzel
To allow for smaller sizes, smoothness and robustness of exposed surface, and for integration in flexible sensor arrays, an innovative piezoresistive pressure sensor design has been developed. In contrast to known concepts, the sensing elements and the conducting tracks are positioned within the pressure reference chamber and, thus, protected against environmental influences such as water or particles. Sensing elements are electrically accessible from the backside by vias, thus enabling a fully flat surface totally free of electrical elements as desired for flow experiments. The sensor comprises a thin silicon sensing membrane and a body made from glass holding the reference chamber and the vias. The structuring of the sensor body is performed by femtosecond laser ablation. Steep ablation edges are realized, leading to small sensor dimensions. The sensing membrane is fabricated using potassium hydroxide (KOH) wet etching. The glass body and the silicon membrane can be connected with different techniques; hitherto, adhesive bonding by an epoxy resin layer was successfully tested. A sensitivity of 10 mV/V/bar and stable operation up to 7 bar absolute pressure could already be demonstrated. The new concept simplifies micromanufacture and allows for flip-chip-assembly in foil-based flexible systems that can be used in liquids and harsh environments.
Analytical and Bioanalytical Chemistry | 2018
Florian Schenk; Patricia Weber; Julian Vogler; Lars Hecht; Andreas Dietzel; Günter Gauglitz
AbstractLateral flow type detection is becoming interesting not only in regions with a poor medical infrastructure but also for practitioners in day-to-day clinical work or for veterinary control in case of possible epidemics. In this work, we describe the first steps of development of a multi-channel strip with potential internal calibration of multiparametric and colorimetric lateral flow assays for the simultaneous detection of the lipopolysaccharides (LPS) of Salmonella typhimurium (S. typhimurium) and Salmonella enteritidis (S. enteritidis). We structured four channels in the nitrocellulose membrane with a Yb:KGW solid-state femtosecond laser (“cold” ablation process) to form distinct tracks of porous material and used gold nanoparticles for the labeling of the antibodies. In addition, calibration curves of the spot intensities of both serovars are presented, and it was shown that no cross reactivity between the different capture antibodies and LPS occurred. Finally, we detected LPS of both Salmonella serovars simultaneously. The color changes (spot intensities of the reaction zones) were evaluated using the open-source image-processing program ImageJ. Graphical abstractMultiparametric testing, strip A was tested with LPS S. enteritidis ( c=0.01 g/L) and LPS S.typhimurium ( c=0.0001 g/L), strip B with LPS S. enteritidis ( c=0.001 g/L) and LPS S. typhimurium ( c=0.001g/L) and strip C with LPS S. enteritidis (c=0.0001 g/L) and LPS S. typhimurium ( c=0.01 g/L), and read-out
Proceedings of SPIE | 2015
Martin Schwerter; Lars Hecht; Eugen Koch; Monika Leester-Schädel; Stephanus Büttgenbach; Andreas Dietzel
Using more and more controlled systems in future aircraft the need of flexible sensors to be applied on curved aircraft structures increases. An appropriate substrate material for such flexible sensors is polyimide, which is available both as ready-made foil and as liquid polyimide to be spun-on. Latest results in producing and processing of polyimide layers with a thickness of down to 1 μm including designs for thin foil sensors are presented respectively. The successful processing of liquid polyimide is outlined first including the spin-on procedure, soft bake and curing for polymerization. Parameters for spin-on volume and rotation speed on glass substrates along with a comparison with ordinary polyimide foil are presented. High-precision structuring of the polyimide layer is performed either by etching (wet-etching as well as dry etching in a barrel etcher) or ablative removal using a femtosecond laser. In combination with a layer of silicon nitride as an inorganic diffusion barrier a reliable protection for water tunnel experiments can be realized. The fabrication of a protection layer and test results in water with protected sensors are presented. The design of a hot-film anemometric sensor array made on spin-on polyimide is demonstrated. With a thickness of down to 7 μm the sensors can be applied on the surface of wind tunnel models and water tunnel models without impacting the flow substantially. Additionally both the concept and recent results of a silicon sensor integrated in a polyimide foil substrate that can measure pressure as a complementary measurand for aeronautics are illustrated.
Micromachines | 2018
Ala’aldeen Al-Halhouli; Wisam Al-Faqheri; Baider Alhamarneh; Lars Hecht; Andreas Dietzel
The fabrication and testing of spiral microchannels with a trapezoidal cross section for the passive separation of microparticles is reported in this article. In contrast to previously reported fabrication methods, the fabrication of trapezoidal spiral channels in glass substrates using a femtosecond laser is reported for the first time in this paper. Femtosecond laser ablation has been proposed as an accurate and fast prototyping method with the ability to create 3D features such as slanted-base channels. Moreover, the fabrication in borosilicate glass substrates can provide high optical transparency, thermal resistance, dimensional stability, and chemical inertness. Post-processing steps of the laser engraved glass substrate are also detailed in this paper including hydrogen fluoride (HF) dipping, chemical cleaning, surface activation, and thermal bonding. Optical 3D images of the fabricated chips confirmed a good fabrication accuracy and acceptable surface roughness. To evaluate the particle separation function of the microfluidic chip, 5 μm, 10 μm, and 15 μm particles were focused and recovered from the two outlets of the spiral channel. In conclusion, the new chemically inert separation chip can be utilized in biological or chemical processes where different sizes of cells or particles must be separated, i.e., red blood cells, circulating tumor cells, and technical particle suspensions.
Biomedical Microdevices | 2017
Torben Schulze; Kai Mattern; Eike Früh; Lars Hecht; Ingo Rustenbeck; Andreas Dietzel
Microfluidics and Nanofluidics | 2016
Lars Hecht; Jens Philipp; Kai Mattern; Andreas Dietzel; Claus-Peter Klages
Microelectronic Engineering | 2016
Lars Hecht; Denise van Rossum; Andreas Dietzel
Microsystem Technologies-micro-and Nanosystems-information Storage and Processing Systems | 2010
Jan Dittmer; Lars Hecht; Rolf Judaschke; Stephanus Büttgenbach
Microelectronic Engineering | 2018
Mayra Garcés-Schröder; David Metz; Lars Hecht; Rahul Iyer; Monika Leester-Schädel; Markus Böl; Andreas Dietzel
Archive | 2017
Mayra Garcés-Schröder; Lars Hecht; Anke Vierheller; Monika Leester-Schädel; Markus Böl; Andreas Dietzel