Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Hernquist is active.

Publication


Featured researches published by Lars Hernquist.


Nature | 2005

Energy input from quasars regulates the growth and activity of black holes and their host galaxies.

Tiziana Di Matteo; Volker Springel; Lars Hernquist

In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy–galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.


Monthly Notices of the Royal Astronomical Society | 2005

Modelling feedback from stars and black holes in galaxy mergers

Volker Springel; Tiziana Di Matteo; Lars Hernquist

We describe techniques for incorporating feedback from star formation and black hole (BH) accretion into simulations of isolated and merging galaxies. At present, the details of these processes cannot be resolved in simulations on galactic scales. Our basic approach therefore involves forming coarse-grained representations of the properties of the interstellar medium (ISM) and BH accretion starting from basic physical assumptions, so that the impact of these effects can be included on resolved scales. We illustrate our method using a multiphase description of star-forming gas. Feedback from star formation pressurizes highly overdense gas, altering its effective equation of state (EOS). We show that this allows the construction of stable galaxy models with much larger gas fractions than possible in earlier numerical work. We extend the model by including a treatment of gas accretion onto central supermassive BHs in galaxies. Assuming thermal coupling of a small fraction of the bolometric luminosity of accreting BHs to the surrounding gas, we show how this feedback regulates the growth of BHs. In gas-rich mergers of galaxies, we observe a complex interplay between starbursts and central active galactic nuclei (AGN) activity when the tidal interaction triggers intense nuclear inflows of gas. Once an accreting supermassive BH has grown to a critical size, feedback terminates its further growth and expels gas from the central region in a powerful quasar-driven wind. Our simulation methodology is therefore able to address the coupled processes of gas dynamics, star formation and BH accretion during the formation of galaxies.


Monthly Notices of the Royal Astronomical Society | 2003

Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation

Volker Springel; Lars Hernquist

We present a model for star formation and supernova feedback that describes the multiphase structure of star-forming gas on scales that are typically not resolved in cosmological simulations. Our approach includes radiative heating and cooling, the growth of cold clouds embedded in an ambient hot medium, star formation in these clouds, feedback from supernovae in the form of thermal heating and cloud evaporation, galactic winds and outflows, and metal enrichment. Implemented using smoothed particle hydrodynamics, our scheme is a significantly modified and extended version of the grid-based method of Yepes et al., and enables us to achieve a high dynamic range in simulations of structure formation. We discuss properties of the feedback model in detail and show that it predicts a self-regulated, quiescent mode of star formation, which, in particular, stabilizes the star-forming gaseous layers of disc galaxies. The parametrization of this mode can be reduced to a single free quantity that determines the overall time-scale for star formation. We fix this parameter numerically to match the observed rates of star formation in local disc galaxies. When normalized in this manner, cosmological simulations employing our model nevertheless overproduce the observed cosmic abundance of stellar material. We are thus motivated to extend our feedback model to include galactic winds associated with star formation. Using small-scale simulations of individual star-forming disc galaxies, we show that these winds produce either galactic fountains or outflows, depending on the depth of the gravitational potential. In low-mass haloes, winds can greatly suppress the overall efficiency of star formation. When incorporated into cosmological simulations, our combined model for star formation and winds predicts a cosmic star formation density that is consistent with observations, provided that the winds are sufficiently energetic. Moreover, outflows from galaxies in these simulations drive chemical enrichment of the intergalactic medium – in principle, accounting for the presence of metals in the Lyman α forest.


Astrophysical Journal Supplement Series | 2006

A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids

Philip F. Hopkins; Lars Hernquist; Thomas J. Cox; Tiziana Di Matteo; Brant Robertson; Volker Springel

We present an evolutionary model for starbursts, quasars, and spheroidal galaxies in which mergers between gas-rich galaxies drive nuclear inflows of gas, producing starbursts and feeding the buried growth of supermassive black holes (BHs) until feedback expels gas and renders a briefly visible optical quasar. The quasar lifetime and obscuring column density depend on both the instantaneous and peak quasar luminosity, and we determine this dependence using a large set of galaxy merger simulations varying galaxy properties, orbital geometry, and gas physics. We use these fits to deconvolve observed quasar luminosity functions and obtain the evolution of the formation rate of quasars with peak luminosity, (Lpeak, z). Quasars spend extended periods at luminosities well below peak, so (Lpeak) has a maximum corresponding to the break in the observed luminosity function. From (Lpeak) and our simulations, we obtain self-consistent hard and soft X-ray and optical luminosity functions and predict many observables at multiple redshifts, including column density distributions of optical and X-ray samples, the luminosity function of broad-line quasars in X-ray samples and broad-line fraction versus luminosity, active BH mass functions, the distribution of Eddington ratios, the mass function of relic BHs and total BH mass density, and the cosmic X-ray background. In every case, our predictions agree well with observed estimates, without invoking ad hoc assumptions about source properties or distributions. We provide a library of Monte Carlo realizations of our models for comparison with observations.


Monthly Notices of the Royal Astronomical Society | 2002

Cosmological smoothed particle hydrodynamics simulations: the entropy equation

Volker Springel; Lars Hernquist

We discuss differences in simulation results that arise between the use of either the thermal energy or the entropy as an independent variable in smoothed particle hydrodynamics (SPH). In this context, we derive a new version of SPH that manifestly conserves both energy and entropy if smoothing lengths are allowed to adapt freely to the local mass resolution. To test various formu- lations of SPH, we consider point-like energy injection and find that powerful explosions are well represented by SPH even when the energy is deposited into a single particle, provided that the entropy equation is integrated. If the thermal energy is instead used as an independent variable, unphysical solutions can be obtained for this problem. We also examine the radiative cooling of gas spheres that collapse and virialize in isolation and of halos that form in cosmological simulations of structure formation. When applied to these problems, the thermal energy version of SPH leads to substantial overcooling in halos that are resolved with up to a few thousand particles, while the entropy formulation is biased only moderately low for these halos. For objects resolved with much larger particle numbers, the two approaches yield consistent results. We trace the origin of the differences to systematic resolution effects in the outer parts of cooling flows. The cumulative effect of this overcooling can be significant. In cosmological simulations of moderate size, we find that the fraction of baryons which cool and condense can be reduced by up to a factor ~2 if the entropy equation is employed rather than the thermal energy equation. We also demonstrate that the entropy method leads to a greatly reduced scatter in the density-temperature relation of the low-density Ly-alpha forest relative to the thermal energy approach, in accord with theoretical expectations.(abridged)


The Astrophysical Journal | 2007

An Observational Determination of the Bolometric Quasar Luminosity Function

Philip F. Hopkins; Gordon T. Richards; Lars Hernquist

We combine a large set of quasar luminosity function (QLF) measurements from the rest-frame optical, soft and hard X-ray, and near- and mid-IR bands to determine the bolometric QLF in the redshift interval z = 0-6. Accounting for the observed distributions of quasar column densities and variation of SED shapes, as well as their dependence on luminosity, makes it possible to integrate the observations in a reliable manner and provides a baseline in redshift and luminosity larger than that of any individual survey. We infer the QLF break luminosity and faint-end slope out to z ~ 4.5 and confirm at high significance (10 σ) previous claims of a flattening in both the faint- and bright-end slopes with redshift. With the best-fit estimates of the column density distribution and quasar SED, which both depend on luminosity, a single bolometric QLF self-consistently reproduces the observed QLFs in all bands and at all redshifts for which we compile measurements. Ignoring this luminosity dependence does not yield a self-consistent bolometric QLF and there is no evidence for any additional dependence on redshift. We calculate the expected relic black hole mass function and mass density, cosmic X-ray background, and ionization rate as a function of redshift and find that they are consistent with existing measurements. The peak in the total quasar luminosity density is well constrained at z = 2.15 ± 0.05. We provide a number of fitting functions to the bolometric QLF and its manifestations in various bands, as well as a script to return the QLF at arbitrary frequency and redshift from these fits.


Monthly Notices of the Royal Astronomical Society | 2008

A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei

Rachel S. Somerville; Philip F. Hopkins; Thomas J. Cox; Brant Robertson; Lars Hernquist

We present a new semi-analytic model that self-consistently traces the growth of supermassive black holes (BH) and their host galaxies within the context of the Lambda cold dark matter (� CDM) cosmological framework. In our model, the energy emitted by accreting black holes regulates the growth of the black holes themselves, drives galactic scale winds that can remove cold gas from galaxies, and produces powerful jets that heat the hot gas atmospheres surrounding groups and clusters. We present a comprehensive comparison of our model predictions with observational measurements of key physical properties of low-redshift galaxies, such as cold gas fractions, stellar metallicities and ages, and specific star formation rates. We find that our new models successfully reproduce the exponential cut-off in the stellar mass function and the stellar and cold gas mass densities at z ∼ 0, and predict that star formation should be largely, but not entirely, quenched in massive galaxies at the present day. We also find that our model of self-regulated BH growth naturally reproduces the observed relation between BH mass and bulge mass. We explore the global formation history of galaxies and black holes in our models, presenting predictions for the cosmic histories of star formation, stellar mass assembly, cold gas and metals. We find that models assuming the ‘concordance’ � CDM cosmology overproduce star formation and stellar mass at high redshift (z 2). A model with less small-scale power predicts less star formation at high redshift, and excellent agreement with the observed stellar mass assembly history, but may have difficulty accounting for the cold gas in quasar absorption systems at high redshift (z ∼ 3–4).


Monthly Notices of the Royal Astronomical Society | 2014

Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe

Mark Vogelsberger; Shy Genel; Volker Springel; Paul Torrey; Debora Sijacki; D. Xu; Gregory F. Snyder; Dylan Nelson; Lars Hernquist

We introduce the Illustris Project, a series of large-scale hydrodynamical simulations of galaxy formation. The highest resolution simulation, Illustris-1, covers a volume of


Astrophysical Journal Supplement Series | 2008

A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity

Philip F. Hopkins; Lars Hernquist; Thomas J. Cox; Dušan Kereš

(106.5\,{\rm Mpc})^3


The Astrophysical Journal | 2001

Baryons in the Warm-Hot Intergalactic Medium

Romeel Davé; Renyue Cen; Jeremiah P. Ostriker; Greg L. Bryan; Lars Hernquist; Neal Katz; David H. Weinberg; Michael L. Norman; Brian W. O'Shea

, has a dark mass resolution of

Collaboration


Dive into the Lars Hernquist's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Vogelsberger

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Philip F. Hopkins

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Paul Torrey

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neal Katz

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge