Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Husmann is active.

Publication


Featured researches published by Lars Husmann.


The Journal of Nuclear Medicine | 2007

Cardiac Image Fusion from Stand-Alone SPECT and CT: Clinical Experience

Oliver Gaemperli; Tiziano Schepis; Ines Valenta; Lars Husmann; Hans Scheffel; Victor Duerst; Franz R. Eberli; Thomas F. Lüscher; Hatem Alkadhi; Philipp A. Kaufmann

Myocardial perfusion imaging with SPECT (SPECT-MPI) and 64-slice CT angiography (CTA) are both established techniques for the noninvasive evaluation of coronary artery disease (CAD). Three-dimensional (3D) SPECT/CT image fusion may offer an incremental diagnostic value by integrating both sets of information. We report our first clinical experiences with fused 3D SPECT/CT in CAD patients. Methods: Thirty-eight consecutive patients with at least 1 perfusion defect on SPECT-MPI (1-d adenosine stress/rest SPECT with 99mTc-tetrofosmin) and 64-slice CTA were included. 3D volume-rendered fused SPECT/CT images were generated and compared with the findings from the side-by-side analysis with regard to coronary lesion interpretation by assigning the perfusion defects to their corresponding coronary lesion. Results: The fused SPECT/CT images added information on pathophysiologic lesion severity in 27 coronary stenoses (22%) of 12 patients (29%) (P < 0.001). Among 40 equivocal lesions on side-by-side analysis, the fused interpretation confirmed hemodynamic significance in 14 lesions and excluded functional relevance in 10 lesions. In 3 lesions, assignment of perfusion defect and coronary lesion appeared to be reliable on side-by-side analysis but proved to be inaccurate on fused interpretation. Added diagnostic information by SPECT/CT was more commonly found in patients with stenoses of small vessels (P = 0.004) and involvement of diagonal branches (P = 0.01). Conclusion: In addition to being intuitively convincing, 3D SPECT/CT fusion images in CAD may provide added diagnostic information on the functional relevance of coronary artery lesions.


Radiology | 2008

Functionally Relevant Coronary Artery Disease: Comparison of 64-Section CT Angiography with Myocardial Perfusion SPECT

Oliver Gaemperli; Tiziano Schepis; Ines Valenta; Pascal Koepfli; Lars Husmann; Hans Scheffel; Sebastian Leschka; Franz R. Eberli; Thomas F. Lüscher; Hatem Alkadhi; Philipp A. Kaufmann

PURPOSE To prospectively determine the accuracy of 64-section computed tomographic (CT) angiography for the depiction of coronary artery disease (CAD) that induces perfusion defects at myocardial perfusion imaging with single photon emission computed tomography (SPECT), by using myocardial perfusion imaging as the reference standard. MATERIALS AND METHODS All patients gave written informed consent after the study details, including radiation exposure, were explained. The study protocol was approved by the local institutional review board. In patients referred for elective conventional coronary angiography, an additional 64-section CT angiography study and a myocardial perfusion imaging study (1-day adenosine stress-rest protocol) with technetium 99m-tetrofosmin SPECT were performed before conventional angiography. Coronary artery diameter narrowing of 50% or greater at CT angiography was defined as stenosis and was compared with the myocardial perfusion imaging findings. Quantitative coronary angiography served as a reference standard for CT angiography. RESULTS A total of 1093 coronary segments in 310 coronary arteries in 78 patients (mean age, 65 years +/- 9 [standard deviation]; 35 women) were analyzed. CT angiography revealed stenoses in 137 segments (13%) corresponding to 91 arteries (29%) in 46 patients (59%). SPECT revealed 14 reversible, 13 fixed, and six partially reversible defects in 31 patients (40%). Sensitivity, specificity, and negative and positive predictive values, respectively, of CT angiography in the detection of reversible myocardial perfusion imaging defects were 95%, 53%, 94%, and 58% on a per-patient basis and 95%, 75%, 96%, and 72% on a per-artery basis. Agreement between CT and conventional angiography was very good (96% and kappa = 0.92 for patient-based analysis, 93% and kappa = 0.84 for vessel-based analysis). CONCLUSION Sixty-four-section CT angiography can help rule out hemodynamically relevant CAD in patients with intermediate to high pretest likelihood, although an abnormal CT angiography study is a poor predictor of ischemia.


The Journal of Nuclear Medicine | 2010

Nuclear Myocardial Perfusion Imaging with a Cadmium-Zinc-Telluride Detector Technique: Optimized Protocol for Scan Time Reduction

Bernhard A. Herzog; Ronny R. Buechel; Ruth Katz; Michael Brueckner; Lars Husmann; Irene A. Burger; Aju P. Pazhenkottil; Ines Valenta; Oliver Gaemperli; Valerie Treyer; Philipp A. Kaufmann

We aimed at establishing the optimal scan time for nuclear myocardial perfusion imaging (MPI) on an ultrafast cardiac γ-camera using a novel cadmium-zinc-telluride (CZT) solid-state detector technology. Methods: Twenty patients (17 male; BMI range, 21.7–35.5 kg/m2) underwent 1-d 99mTc-tetrofosmin adenosine stress and rest MPI protocols, each with a 15-min acquisition on a standard dual-detector SPECT camera. All scans were immediately repeated on an ultrafast CZT camera over a 6-min acquisition time and reconstructed from list-mode raw data to obtain scan durations of 1 min, 2 min, etc., up to a maximum of 6 min. For each of the scan durations, the segmental tracer uptake value (percentage of maximum myocardial uptake) from the CZT camera was compared by intraclass correlation with standard SPECT camera data using a 20-segment model, and clinical agreement was assessed per coronary territory. Scan durations above which no further relevant improvement in uptake correlation was found were defined as minimal required scan times, for which Bland–Altman limits of agreement were calculated. Results: Minimal required scan times were 3 min for low dose (r = 0.81; P < 0.001; Bland–Altman, −11.4% to 12.2%) and 2 min for high dose (r = 0.80; P < 0.001; Bland–Altman, −7.6% to 12.9%), yielding a clinical agreement of 95% and 97%, respectively. Conclusion: We have established the minimal scan time for a CZT solid-state detector system, which allows 1-d stress/rest MPI with a substantially reduced acquisition time resulting in excellent agreement with regard to uptake and clinical findings, compared with MPI from a standard dual-head SPECT γ-camera.


Investigative Radiology | 2007

Image quality and reconstruction intervals of dual-source CT coronary angiography: recommendations for ECG-pulsing windowing.

Sebastian Leschka; Hans Scheffel; Lotus Desbiolles; André Plass; Oliver Gaemperli; Ines Valenta; Lars Husmann; Thomas Flohr; Michele Genoni; Borut Marincek; Philipp A. Kaufmann; Hatem Alkadhi

Purpose:To evaluate reconstruction intervals and image quality in dual-source computed tomography (DSCT) coronary angiography for optimal placement of the ECG-pulsing window. Materials and Methods:DSCT coronary angiography was performed in 60 patients. Thirteen datasets were reconstructed in 5% increments from 20–80%. Two readers independently assessed image quality of each segment in each percentage-interval, using scores ranging from 1 (no motion artifacts) to 4 (nonevaluable). Results:Mean heart rate (HR) was 69.0 ± 18.9 beats per minute (bpm) (range, 35–117 bpm). Diagnostic image quality (scores 1–3) was found in 97.8% of all segments (763 of 780). The 70% RR-interval provided best image quality in all patients and all HRs. The narrowest reconstruction window providing diagnostic image quality was 60–70% for HR <60 bpm, 60–80% for 60–70 bpm, 55–80% for 70–80 bpm, and 30–80% for HR >80 bpm. Conclusions:DSCT coronary angiography provides best image quality for various HRs at 70%. The ECG-pulsing window can be adapted according to the HR while maintaining diagnostic image quality.


European Journal of Nuclear Medicine and Molecular Imaging | 2007

Accuracy of 64-slice CT angiography for the detection of functionally relevant coronary stenoses as assessed with myocardial perfusion SPECT

Oliver Gaemperli; Tiziano Schepis; Pascal Koepfli; Ines Valenta; Jan D. Soyka; Sebastian Leschka; Lotus Desbiolles; Lars Husmann; Hatem Alkadhi; Philipp A. Kaufmann

PurposeCT angiography (CTA) offers a valuable alternative for the diagnosis of CAD but its value in the detection of functionally relevant coronary stenoses remains uncertain. We prospectively compared the accuracy of 64-slice CTA with that of myocardial perfusion imaging (MPI) using 99mTc-tetrofosmin-SPECT as the gold standard for the detection of functionally relevant coronary artery disease (CAD).MethodsMPI and 64-slice CT were performed in 100 consecutive patients. CTA lesions were analysed quantitatively and area stenoses ≥50% and ≥75% were compared with the MPI findings.ResultsIn 23 patients, MPI perfusion defects were found (12 reversible, 13 fixed). A total of 399 coronary arteries and 1,386 segments was analysed. Eighty-four segments (6.1%) in 23 coronary arteries (5.8%) of nine patients (9.0%) were excluded owing to insufficient image quality. In the remaining 1,302 segments, quantitative CTA revealed stenoses ≥50% in 57 of 376 coronary arteries (15.2%) and stenoses ≥75% in 32 (8.5%) coronary arteries. Using a cut-off at ≥75% area stenosis, CTA yielded the following sensitivity, specificity, negative (NPV) and positive predictive value (PPV), and accuracy for the detection of any (fixed and reversible) MPI defect: by patient, 75%, 90%, 93%, 68% and 87%, respectively; by artery, 76%, 95%, 99%, 50% and 94%, respectively.ConclusionSixty-four-slice CTA is a reliable tool to rule out functionally relevant CAD in a non-selected population with an intermediate pretest likelihood of disease. However, an abnormal CTA is a poor predictor of ischaemia.


European Heart Journal | 2008

Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience

Bernhard A. Herzog; Lars Husmann; Nina Burkhard; Oliver Gaemperli; Ines Valenta; Fuminari Tatsugami; Christophe A. Wyss; Ulf Landmesser; Philipp A. Kaufmann

AIMS To evaluate the accuracy of low-dose computed tomography coronary angiography (CTCA) using prospective ECG-triggering for the assessment of coronary artery disease (CAD). METHODS AND RESULTS A total of 30 patients (19 males, 11 females, mean age 58.8 +/- 9.9 years) underwent low-dose CTCA and invasive coronary angiography (CA) [median 2 days (0, 41)]. Before CT scanning, intravenous beta-blocker was administered in 18 of 30 patients as heart rate (HR) was >65 b.p.m., achieving a mean HR of 55.7 +/- 7.9 b.p.m. CAD was defined as coronary artery narrowing > or =50%, using CA as standard of reference. The estimated mean effective radiation dose was 2.1 +/- 0.7 mSv (range: 1.0-3.3), yielding 96.0% (383/399) of evaluable segments. On an intention-to-diagnose-base, all non-evaluative segments were included in the analysis. Vessels with a non-evaluative segment and no further finding were censored as false positive. Patient-based analysis revealed sensitivity, specificity, positive predictive value, and negative predictive value of 100, 83.3, 90.0, and 100%, respectively. The respective values per vessel were 100, 88.9, 85.7, and 100%, respectively. CONCLUSION Prospective ECG-triggering allows low-dose CTCA and provides high diagnostic accuracy in the assessment of CAD in patients with stable sinus rhythm and a low heart rate.


European Heart Journal | 2011

Prognostic value of cardiac hybrid imaging integrating single-photon emission computed tomography with coronary computed tomography angiography

Aju P. Pazhenkottil; Rene Nkoulou; Jelena-Rima Ghadri; Bernhard A. Herzog; Ronny R. Buechel; Silke M. Küest; Mathias Wolfrum; Michael Fiechter; Lars Husmann; Oliver Gaemperli; Philipp A. Kaufmann

Aims Although cardiac hybrid imaging, fusing single-photon emission computed tomography (SPECT) myocardial perfusion imaging with coronary computed tomography angiography (CCTA), provides important complementary diagnostic information for coronary artery disease (CAD) assessment, no prognostic data exist on the predictive value of cardiac hybrid imaging. Hence, the aim of this study was to assess the prognostic value of hybrid SPECT/CCTA images. Methods and results Of 335 consecutive patients undergoing a 1-day stress/rest (99m)Tc-tetrofosmin SPECT and a CCTA, acquired on stand-alone scanners and fused to obtain cardiac hybrid images, follow-up was obtained in 324 patients (97%). Survival free of all-cause death or non-fatal myocardial infarction (MI) and free of major adverse cardiac events (MACE: death, MI, unstable angina requiring hospitalization, coronary revascularizations) was determined using the Kaplan-Meier method for the following groups: (i) stenosis by CCTA and matching reversible SPECT defect; (ii) unmatched CCTA and SPECT finding; and (iii) normal finding by CCTA and SPECT. Coxs proportional hazard regression was used to identify independent predictors for cardiac events. At a median follow-up of 2.8 years (25th-75th percentile: 1.9-3.6), 69 MACE occurred in 47 patients, including 20 death/MI. A corresponding matched hybrid image finding was associated with a significantly higher death/MI incidence (P < 0.005) and proved to be an independent predictor for MACE. The annual death/MI rate was 6.0, 2.8, and 1.3% for patients with matched, unmatched, and normal findings. Conclusion Cardiac hybrid imaging allows risk stratification in patients with known or suspected CAD. A matched defect on hybrid image is a strong predictor of MACE.


The Journal of Nuclear Medicine | 2007

Added Value of Coronary Artery Calcium Score as an Adjunct to Gated SPECT for the Evaluation of Coronary Artery Disease in an Intermediate-Risk Population

Tiziano Schepis; Oliver Gaemperli; Pascal Koepfli; Mehdi Namdar; Ines Valenta; Hans Scheffel; Sebastian Leschka; Lars Husmann; Franz R. Eberli; Thomas F. Lüscher; Hatem Alkadhi; Philipp A. Kaufmann

The coronary artery calcium (CAC) score is a readily and widely available tool for the noninvasive diagnosis of atherosclerotic coronary artery disease (CAD). The aim of this study was to investigate the added value of the CAC score as an adjunct to gated SPECT for the assessment of CAD in an intermediate-risk population. Methods: Seventy-seven prospectively recruited patients with intermediate risk (as determined by the Framingham Heart Study 10-y CAD risk score) and referred for coronary angiography because of suspected CAD underwent stress 99mTc-tetrofosmin SPECT myocardial perfusion imaging (MPI) and CT CAC scoring within 2 wk before coronary angiography. The sensitivity and specificity of SPECT alone and of the combination of the 2 methods (SPECT plus CAC score) in demonstrating significant CAD (≥50% stenosis on coronary angiography) were compared. Results: Forty-two (55%) of the 77 patients had CAD on coronary angiography, and 35 (45%) had abnormal SPECT results. The CAC score was significantly higher in subjects with perfusion abnormalities than in those who had normal SPECT results (889 ± 836 [mean ± SD] vs. 286 ± 335; P < 0.0001). Similarly, with rising CAC scores, a larger percentage of patients had CAD. Receiver-operating-characteristic analysis showed that a CAC score of greater than or equal to 709 was the optimal cutoff for detecting CAD missed by SPECT. SPECT alone had a sensitivity and a specificity for the detection of significant CAD of 76% and 91%, respectively. Combining SPECT with the CAC score (at a cutoff of 709) improved the sensitivity of SPECT (from 76% to 86%) for the detection of CAD, in association with a nonsignificant decrease in specificity (from 91% to 86%). Conclusion: The CAC score may offer incremental diagnostic information over SPECT data for identifying patients with significant CAD and negative MPI results.


European Journal of Nuclear Medicine and Molecular Imaging | 2007

Use of coronary calcium score scans from stand-alone multislice computed tomography for attenuation correction of myocardial perfusion SPECT

Tiziano Schepis; Oliver Gaemperli; Pascal Koepfli; Christine Rüegg; Cyrill Burger; Sebastian Leschka; Lotus Desbiolles; Lars Husmann; Hatem Alkadhi; Philipp A. Kaufmann

PurposeTo evaluate the use of CT attenuation maps, generated from coronary calcium scoring (CCS) scans at in- and expiration with a 64-slice CT scanner, for attenuation correction (AC) of myocardial perfusion SPECT images.MethodsThirty-two consecutive patients underwent 99mTc-tetrofosmin gated adenosine stress/rest SPECT scan on an Infinia Hawkeye SPECT-CT device (GE Medical Systems) followed by CCS and CT angiography on a 64-slice CT. AC of the iteratively reconstructed images was performed with AC maps obtained: (a) from the “Hawkeye” low-resolution X-ray CT facility attached to the Infinia camera (IRAC); (b) from the CCS scan acquired on a 64-slice CT scanner during maximal inspiration (ACINSP) and (c) during normal expiration (ACEXP). Automatically determined uptake values of stress scans (QPS, Cedars Medical Sinai) from ACINSP and ACEXP were compared with IRAC. Agatston score (AS) values using ACINSPversus ACEXP were also compared.ResultsACINSP and ACEXP resulted in identical findings versus IRAC by visual analysis. A good correlation for uptake values between IRAC and ACINSP was found (apex, r=0.92; anterior, r=0.85; septal, r=0.91; lateral, r=0.86; inferior, r=0.90; all p<0.0001). The correlation was even closer between IRAC and ACEXP (apex, r=0.97; anterior, r=0.91; septal, r=0.94; lateral, r=0.92; inferior, r=0.97; all p<0.0001). The mean AS during inspiration (319±737) and expiration(317±778) was comparable (p=NS).ConclusionAttenuation maps from CCS allow accurate AC of SPECT MPI images. ACEXP proved superior to ACINSP, suggesting that in hybrid scans CCS may be performed during normal expiration to allow its additional use for AC of SPECT MPI.


Heart | 2009

First head-to-head comparison of effective radiation dose from low-dose 64-slice CT with prospective ECG-triggering versus invasive coronary angiography

Bernhard A. Herzog; Christophe A. Wyss; Lars Husmann; Oliver Gaemperli; Ines Valenta; Valerie Treyer; Ulf Landmesser; Philipp A. Kaufmann

Background: Reduction of radiation burden of multidetector computed tomography coronary angiography (CTCA) has remained an important task. Objective: To compare effective radiation dose of low-dose 64-slice CTCA using prospective ECG-triggering versus diagnostic invasive coronary angiography (CA). Methods: 42 patients referred for elective invasive CA owing to suspected coronary artery disease (CAD) were prospectively enrolled to undergo a low-dose CTCA without calcium scoring within the same day before CA. Dose-area product of diagnostic invasive CA and dose-length product of CTCA were measured, converted into effective radiation dose and compared using Mann-Whitney U tests. In addition, accuracy of CTCA to detect CAD (coronary artery narrowing ⩾50%) was assessed using invasive CA as standard of reference. On an intention-to-diagnose basis all non-evaluative vessels were included in the analysis and censored as positive. Results: The estimated mean effective radiation dose was 8.5 (4.4) mSv (range 1.4–20.5 mSv) for diagnostic invasive CA, and 2.1 (0.7) mSv (range 1.0–3.3 mSv) for CTCA (p<0.001). 19 patients (42.9%) had no CAD by invasive CA. 40 (95.2%) patients have been correctly classified as having CAD (23/23) or no CAD (17/19). Over 97% (551/567) of segments were evaluable. Vessel-based analysis revealed sensitivity, specificity, positive and negative predictive value of 94.2% (CI 0.8% to 1.0%), 94.8% (CI 09% to 1.0%), 89.0% (CI 0.8% to 1.0%), 97.4% (CI 09% to 1.0%) and an accuracy of 94.6%. Conclusions: Low dose CTCA allows evaluation of CAD with high accuracy, but delivers a significantly less effective radiation dose to patients compared to diagnostic invasive CA.

Collaboration


Dive into the Lars Husmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge