Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Muhl is active.

Publication


Featured researches published by Lars Muhl.


Nature Protocols | 2013

Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease

Annika Mehlem; Carolina E. Hagberg; Lars Muhl; Ulf J. Eriksson; Annelie Falkevall

Excess lipid accumulation in peripheral tissues is a key feature of many metabolic diseases. Therefore, techniques for imaging and quantifying lipids in various tissues are important for understanding and evaluating the overall metabolic status of a research subject. Here we present a protocol that detects neutral lipids and lipid droplet (LD) morphology by oil red O (ORO) staining of sections from frozen tissues. The method allows for easy estimation of tissue lipid content and distribution using only basic laboratory and computer equipment. Furthermore, the procedure described here is well suited for the comparison of different metabolically challenged animal models. As an example, we include data on muscular and hepatic lipid accumulation in diet-induced and genetically induced diabetic mice. The experimental description presents details for optimal staining of lipids using ORO, including tissue collection, sectioning, staining, imaging and measurements of tissue lipids, in a time frame of less than 2 d.


Nature | 2012

Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes

Carolina E. Hagberg; Annika Mehlem; Annelie Falkevall; Lars Muhl; Barbara C. Fam; Henrik Ortsäter; Pierre Scotney; Daniel Nyqvist; Erik Samén; Li Lu; Sharon Stone-Elander; Joseph Proietto; Sofianos Andrikopoulos; Åke Sjöholm; Andrew D. Nash; Ulf J. Eriksson

The prevalence of type 2 diabetes is rapidly increasing, with severe socioeconomic impacts. Excess lipid deposition in peripheral tissues impairs insulin sensitivity and glucose uptake, and has been proposed to contribute to the pathology of type 2 diabetes. However, few treatment options exist that directly target ectopic lipid accumulation. Recently it was found that vascular endothelial growth factor B (VEGF-B) controls endothelial uptake and transport of fatty acids in heart and skeletal muscle. Here we show that decreased VEGF-B signalling in rodent models of type 2 diabetes restores insulin sensitivity and improves glucose tolerance. Genetic deletion of Vegfb in diabetic db/db mice prevented ectopic lipid deposition, increased muscle glucose uptake and maintained normoglycaemia. Pharmacological inhibition of VEGF-B signalling by antibody administration to db/db mice enhanced glucose tolerance, preserved pancreatic islet architecture, improved β-cell function and ameliorated dyslipidaemia, key elements of type 2 diabetes and the metabolic syndrome. The potential use of VEGF-B neutralization in type 2 diabetes was further elucidated in rats fed a high-fat diet, in which it normalized insulin sensitivity and increased glucose uptake in skeletal muscle and heart. Our results demonstrate that the vascular endothelium can function as an efficient barrier to excess muscle lipid uptake even under conditions of severe obesity and type 2 diabetes, and that this barrier can be maintained by inhibition of VEGF-B signalling. We propose VEGF-B antagonism as a novel pharmacological approach for type 2 diabetes, targeting the lipid-transport properties of the endothelium to improve muscle insulin sensitivity and glucose disposal.


Journal of Experimental Medicine | 2006

The G534E polymorphism of the gene encoding the factor VII–activating protease is associated with cardiovascular risk due to increased neointima formation

Daniel Sedding; Jan-Marcus Daniel; Lars Muhl; Karin Hersemeyer; Hannes Brunsch; Bettina Kemkes-Matthes; Ruediger C. Braun-Dullaeus; Harald Tillmanns; Thomas Weimer; Klaus T. Preissner; Sandip M. Kanse

The G534E polymorphism (Marburg I [MI]) of factor VII–activating protease (FSAP) is associated with carotid stenosis and cardiovascular disease. We have previously demonstrated that FSAP is present in atherosclerotic plaques and it is a potent inhibitor of vascular smooth muscle proliferation and migration in vitro. The effect of wild-type (WT)- and MI-FSAP on neointima formation in the mouse femoral artery after wire-induced injury was investigated. Local application of WT-FSAP led to a 70% reduction in the neointima formation, and this effect was dependent on the protease activity of FSAP. MI-FSAP did not inhibit neointima formation in vivo. This is due to a reduced proteolytic activity of MI-FSAP, compared to WT-FSAP, toward platelet-derived growth factor BB, a key mediator of neointima development. The inability of MI-FSAP to inhibit vascular smooth muscle accumulation explains the observed linkage between the MI-polymorphism and increased cardiovascular risk. Hence, FSAP has a protective function in the vasculature, and analysis of MI polymorphism is likely to be clinically relevant in restenosis.


Thrombosis and Haemostasis | 2008

Factor VII-activating protease (FSAP): Vascular functions and role in atherosclerosis

Sandip M. Kanse; Mariana S. Parahuleva; Lars Muhl; Bettina Kemkes-Matthes; Daniel Sedding; Klaus T. Preissner

FSAP is a plasma serine protease for which a potential role in the regulation of coagulation and fibrinolysis is postulated, based on its property to activate factor VII (FVII) as well as pro-urokinase (uPA). In clinical studies, the G534E single nucleotide polymorphism (Marburg I) of FSAP has been linked to late complications of atherothrombosis and is associated with a low proteolytic activity, particularly, towards pro-uPA. This has stimulated much interest in a search for additional functions of FSAP in the cardiovascular system. FSAP is a potent inhibitor of vascular smooth muscle cell proliferation and migration in vitro and local application of FSAP (but not Marburg I variant) in animal models reduces neointima formation. This is due to a reduced proteolytic activity of the variant isoform towards platelet derived growth factor-BB, a key mediator of neointima development. Moreover, appreciable quantities of FSAP are localized to unstable atherosclerotic plaques and may contribute to plaque instability. These data indicate that the cellular regulatory effects of FSAP may be more important than its influence on haemostasis. In this review the contribution of FSAP to vascular fibroproliferative inflammatory diseases in the context of pericellular proteolysis of the extracellular matrix, growth factor activity and haemostasis will be highlighted.


FEBS Journal | 2009

High negative charge-to-size ratio in polyphosphates and heparin regulates factor VII-activating protease

Lars Muhl; Sebastian P. Galuska; Katariina Öörni; Laura Hernandez-Ruiz; Luminita-Cornelia Andrei-Selmer; Rudolf Geyer; Klaus T. Preissner; Felix A. Ruiz; Petri T. Kovanen; Sandip M. Kanse

Factor VII‐activating protease (FSAP) circulates as an inactive zymogen in the plasma. FSAP also regulates fibrinolysis by activating pro‐urokinase or cellular activation via cleavage of platelet‐derived growth factor BB (PDGF‐BB). As the Marburg I polymorphism of FSAP, with reduced enzymatic activity, is a risk factor for atherosclerosis and liver fibrosis, the regulation of FSAP activity is of major importance. FSAP is activated by an auto‐catalytic mechanism, which is amplified by heparin. To further investigate the structural requirements of polyanions for controlling FSAP activity, we performed binding, activation and inhibition studies using heparin and derivatives with altered size and charge, as well as other glycosaminoglycans. Heparin was effective in binding to and activating FSAP in a size‐ and charge density‐dependent manner. Polyphosphate was more potent than heparin with regard to its interactions with FSAP. Heparin was also an effective co‐factor for inhibition of FSAP by plasminogen activator inhibitor 1 (PAI‐1) and antithrombin, whereas polyphosphate served as co‐factor for the inhibition of FSAP by PAI‐1 only. For FSAP‐mediated inhibition of PDGF‐BB‐induced vascular smooth muscle cell proliferation, heparin as well as a polyphosphate served as efficient co‐factors. Native mast cell‐derived heparin exhibited identical properties to those of unfractionated heparin. Despite the strong effects of synthetic polyphosphate, the platelet‐derived material was a weak activator of FSAP. Hence, negatively charged polymers with a high charge‐to‐size ratio are responsible for the activation of FSAP, and also act as co‐factors for its inhibition by serine protease inhibitors.


Physiology | 2013

Endothelial Fatty Acid Transport: Role of Vascular Endothelial Growth Factor B

Carolina E. Hagberg; Annika Mehlem; Annelie Falkevall; Lars Muhl; Ulf Eriksson

Dietary lipids present in the circulation have to be transported through the vascular endothelium to be utilized by tissue cells, a vital mechanism that is still poorly understood. Vascular endothelial growth factor B (VEGF-B) regulates this process by controlling the expression of endothelial fatty acid transporter proteins (FATPs). Here, we summarize research on the role of the vascular endothelium in nutrient transport, with emphasis on VEGF-B signaling.


Biochemical Journal | 2007

Inhibition of PDGF-BB by Factor VII-activating protease (FSAP) is neutralized by protease nexin-1, and the FSAP–inhibitor complexes are internalized via LRP

Lars Muhl; Anders Nykjaer; Malgorzata Wygrecka; Denis Monard; Klaus T. Preissner; Sandip M. Kanse

FSAP (Factor VII-activating protease) can inhibit neointima formation and VSMC (vascular smooth-muscle cell) proliferation by cleavage of PDGF-BB (platelet-derived growth factor-BB). Negatively charged polyanions lead to autoactivation of the FSAP, but no information is available concerning the potential regulation of FSAP activity and its metabolism in the vessel wall. In the present study, we demonstrate that the enzymatic activity of FSAP can be inhibited by the serine protease inhibitor, PN-1 (protease nexin-1), that is found in the vasculature. This leads to the loss of the inhibitory effect of FSAP on PDGF-BB-mediated DNA synthesis and mitogen-activated protein kinase phosphorylation in VSMCs. The FSAP-PN-1 complexes bind to the LRP (low-density lipoprotein receptor-related protein) and are subsequently internalized. This binding is inhibited by receptor-associated protein, an antagonist of LRP, as well as heparin. While PDGFbetaR (PDGFbeta receptor) is internalized by an LRP-dependent mechanism after stimulation of cells by PDGF-BB, the FSAP-PN-1 complex neither influenced PDGF-BB-mediated phosphorylation of PDGFbetaR nor its internalization via LRP. Hence, PN-1 inhibits the enzymatic activity of FSAP and neutralizes its effect on PDGF-BB-mediated VSMC proliferation. The FSAP-inhibitor complexes are internalized via LRP without influencing the PDGF-BB signal transduction pathway.


Biochemical Journal | 2007

Nucleic acids potentiate Factor VII-activating protease (FSAP)-mediated cleavage of platelet-derived growth factor-BB and inhibition of vascular smooth muscle cell proliferation

Aya Shibamiya; Lars Muhl; Susanne Tannert-Otto; Klaus T. Preissner; Sandip M. Kanse

FSAP (Factor VII-activating protease) can cleave and inactivate PDGF-BB (platelet-derived growth factor-BB) and thereby inhibits VSMC (vascular smooth-muscle cell) proliferation. The auto-activation of FSAP is facilitated by negatively charged polyanions such as heparin, dextransulfate or extracellular ribonucleic acids. Since auto-activation is essential for the anti-proliferative function of FSAP, the influence of nucleic acids as cofactors for the FSAP-mediated inhibition of PDGF-BB was investigated. Natural or artificial RNA was an effective cofactor for FSAP mediated PDGF-BB degradation, whereas the effect of DNA was weak. RNA-induced cleavage of PDGF-BB was inhibited by serine protease inhibitors. The pattern of PDGF-BB cleavage was identical with either heparin or RNA as a cofactor. One of the cleavage sites in PDGF-BB was at the positions 160-162 (R160KK162), which is an important region for receptor binding and activation. In VSMCs, PDGF-BB-stimulated DNA synthesis was inhibited by FSAP in the presence of RNA. RNA was more effective than DNA and the cofactor activity of RNA was neutralized after pretreatment with RNase. FSAP binding to RNA protected the nucleic acid from degradation by RNase. These data are relevant to situations where extracellular nucleic acids released from necrotic or apoptotic cells could activate local FSAP, leading to inhibition of PDGF-BB.


Cell and Tissue Research | 2016

Expression of vascular endothelial growth factor (VEGF)-B and its receptor (VEGFR1) in murine heart, lung and kidney

Lars Muhl; Christine Moessinger; Milena Z. Adzemovic; Marike H. Dijkstra; Ingrid Nilsson; Manuel Zeitelhofer; Carolina E. Hagberg; Jenni Huusko; Annelie Falkevall; Seppo Ylä-Herttuala; Ulf Eriksson

Metabolic diseases, such as obesity and diabetes, are a serious burden for the health system. Vascular endothelial growth factor (VEGF)-B has been shown to regulate tissue uptake and accumulation of fatty acids and is thus involved in these metabolic diseases. However, the cell-type-specific expression pattern of Vegfb and its receptor (VEGFR1, gene Flt1) remains unclear. We explore the expression of Vegfb and Flt1 in the murine heart, lung and kidney by utilizing β-galactosidase knock-in mouse models and combining the analysis of reporter gene expression and immunofluorescence microscopy. Furthermore, Flt1 heterozygous mice were analyzed with regard to muscular fatty acid accumulation and peripheral insulin sensitivity. Throughout the heart, Vegfb expression was found in cardiomyocytes with a postnatal ventricular shift corresponding to known changes in energy requirements. Vegfb expression was also found in the pulmonary myocardium of the lung and in renal epithelial cells of the thick ascending limb of Henle’s loop, the connecting tubule and the collecting duct. In all analyzed organs, VEGFR1 expression was restricted to endothelial cells. We also show that reduced expression of VEGFR1 resulted in decreased cardiac fatty acid accumulation and increased peripheral insulin sensitivity, possibly as a result of attenuated VEGF-B/VEGFR1 signaling. Our data therefore support a tightly controlled, paracrine signaling mechanism of VEGF-B to VEGFR1. The identified cell-specific expression pattern of Vegfb and Flt1 might form the basis for the development of cell-type-targeted research models and contributes to the understanding of the physiological and pathological role of VEGF-B/VEGFR1 signaling.


European Journal of Heart Failure | 2015

Intercellular communication lessons in heart failure

Claudia Bang; Charalambos Antoniades; Alexios S. Antonopoulos; Ulf Eriksson; Constantijn Franssen; Nazha Hamdani; Lorenz Lehmann; Christine Moessinger; Marco Mongillo; Lars Muhl; Thimoteus Speer; Thomas Thum

Cell–cell or inter‐organ communication allows the exchange of information and messages, which is essential for the coordination of cell/organ functions and the maintenance of homeostasis. It has become evident that dynamic interactions of different cell types play a major role in the heart, in particular during the progression of heart failure, a leading cause of mortality worldwide. Heart failure is associated with compensatory structural and functional changes mostly in cardiomyocytes and cardiac fibroblasts, which finally lead to cardiomyocyte hypertrophy and fibrosis. Intercellular communication within the heart is mediated mostly via direct cell–cell interaction or the release of paracrine signalling mediators such as cytokines and chemokines. However, recent studies have focused on the exchange of genetic information via the packaging into vesicles as well as the crosstalk of lipids and other paracrine molecules within the heart and distant organs, such as kidney and adipose tissue, which might all contribute to the pathogenesis of heart failure. In this review, we discuss emerging communication networks and respective underlying mechanisms which could be involved in cardiovascular disease conditions and further emphasize promising therapeutic targets for drug development.

Collaboration


Dive into the Lars Muhl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge