Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Østergaard Pedersen is active.

Publication


Featured researches published by Lars Østergaard Pedersen.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo

Serhat Erbayraktar; Giovanni Grasso; Alessandra Sfacteria; Qiao wen Xie; Thomas Coleman; Mads Kreilgaard; Lars Torup; Thomas N. Sager; Zübeyde Erbayraktar; Necati Gökmen; Osman Yilmaz; Pietro Ghezzi; Pia Villa; Maddalena Fratelli; Simona Casagrande; Marcel Leist; Lone Helboe; Jens Gerwein; Søren Christensen; Marie Aavang Geist; Lars Østergaard Pedersen; Jean Paul Wuerth; Anthony Cerami; Michael Brines

Erythropoietin (EPO) is a tissue-protective cytokine preventing vascular spasm, apoptosis, and inflammatory responses. Although best known for its role in hematopoietic lineages, EPO also affects other tissues, including those of the nervous system. Enthusiasm for recombinant human erythropoietin (rhEPO) as a potential neuroprotective therapeutic must be tempered, however, by the knowledge it also enlarges circulating red cell mass and increases platelet aggregability. Here we examined whether erythropoietic and tissue-protective activities of rhEPO might be dissociated by a variation of the molecule. We demonstrate that asialoerythropoietin (asialoEPO), generated by total enzymatic desialylation of rhEPO, possesses a very short plasma half-life and is fully neuroprotective. In marked contrast with rhEPO, this molecule at doses and frequencies at which rhEPO exhibited erythropoiesis, did not increase the hematocrit of mice or rats. AsialoEPO appeared promptly within the cerebrospinal fluid after i.v. administration; intravenously administered radioiodine-labeled asialoEPO bound to neurons within the hippocampus and cortex in a pattern corresponding to the distribution of the EPO receptor. Most importantly, asialoEPO exhibits a broad spectrum of neuroprotective activities, as demonstrated in models of cerebral ischemia, spinal cord compression, and sciatic nerve crush. These data suggest that nonerythropoietic variants of rhEPO can cross the blood–brain barrier and provide neuroprotection.


The Journal of Neuroscience | 2013

Immunogenicity, Efficacy, Safety, and Mechanism of Action of Epitope Vaccine (Lu AF20513) for Alzheimer’s Disease: Prelude to a Clinical Trial

Hayk Davtyan; Anahit Ghochikyan; Irina Petrushina; Armine Hovakimyan; Arpine Davtyan; Anna Poghosyan; Annette M. Marleau; Nina Movsesyan; Anatoly Kiyatkin; Suhail Rasool; Anna Kirstine Larsen; Peter Juul Madsen; Karen Malene Wegener; Dorte Kornerup Ditlevsen; David H. Cribbs; Lars Østergaard Pedersen; Michael G. Agadjanyan

The Alzheimers disease (AD) process is understood to involve the accumulation of amyloid plaques and tau tangles in the brain. However, attempts at targeting the main culprits, neurotoxic Aβ peptides, have thus far proven unsuccessful for improving cognitive function. Recent clinical trials with passively administrated anti-Aβ antibodies failed to slow cognitive decline in mild to moderate AD patients, but suggest that an immunotherapeutic approach could be effective in patients with mild AD. Using an AD mouse model (Tg2576), we tested the immunogenicity (cellular and humoral immune responses) and efficacy (AD-like pathology) of clinical grade Lu AF20513 vaccine. We found that Lu AF20513 induces robust “non-self” T-cell responses and the production of anti-Aβ antibodies that reduce AD-like pathology in the brains of Tg2576 mice without inducing microglial activation and enhancing astrocytosis or cerebral amyloid angiopathy. A single immunization with Lu AF20513 induced strong humoral immunity in mice with preexisting memory T-helper cells. In addition, Lu AF20513 induced strong humoral responses in guinea pigs and monkeys. These data support the translation of Lu AF20513 to the clinical setting with the aims of: (1) inducing therapeutically potent anti-Aβ antibody responses in patients with mild AD, particularly if they have memory T-helper cells generated after immunizations with conventional tetanus toxoid vaccine, and (2) preventing pathological autoreactive T-cell responses.


Molecular Pharmacology | 2012

Pharmacological Characterization and Modeling of the Binding Sites of Novel 1,3-Bis(pyridinylethynyl)benzenes as Metabotropic Glutamate Receptor 5-Selective Negative Allosteric Modulators

Christina Mølck; Kasper Harpsøe; David E. Gloriam; Rasmus P. Clausen; Ulf Madsen; Lars Østergaard Pedersen; Hermogenes N. Jimenez; Søren Møller Nielsen; Jesper Mosolff Mathiesen; Hans Bräuner-Osborne

Metabotropic glutamate receptor subtype 5 (mGluR5) is a potential drug target in neurological and psychiatric disorders, and subtype-selective allosteric modulators have attracted much attention as potential drug candidates. In this study, the binding sites of three novel 2-methyl-6-(phenylethynyl)pyridine (MPEP)-derived negative allosteric modulators, 2-, 3-, and 4-BisPEB, have been characterized. 2-, 3-, and 4-BisPEB are 1,3-bis(pyridinylethynyl)-benzenes and differ only by the position of the nitrogen atoms in the pyridine rings. Despite their high structural similarity, 2-BisPEB [1,3-bis(pyridin-2-ylethynyl)-benzene, nitrogen atoms in ortho positions], with an IC50 value in the nanomolar range, is significantly more potent than the 3- and 4-pyridyl analogs. Mutational analysis, directed by a previously published mGluR5 homology model, was used to determine key residues for the ligand-receptor interactions that may explain the potency differences of 2-, 3-, and 4-BisPEB. Residues Ile651, Pro655, Tyr659, Asn747, Trp785, Phe788, Tyr792, Ser809, and Ala810 were found to have critical roles for the activity of one or more of the three BisPEBs and the reference compound MPEP. The mutagenesis data suggest that the higher potency of 2-BisPEB is due to hydrogen bonding to Ser809 because the S809A mutation made 2-BisPEB equipotent to 3- and 4-BisPEB (IC50, 1–2.5 μM). The potency of MPEP was also greatly affected by S809A (52-fold), suggesting that a Ser809-mediated hydrogen bond is also a key interaction between MPEP and mGluR5. Potential binding modes of 2-, 3-, and 4-BisPEB obtained by molecular docking to the mGluR5 homology model provide a structural context for the reported major mutational effects.


Journal of Alzheimer's Disease | 2016

Dogs with Cognitive Dysfunction as a Spontaneous Model for Early Alzheimer’s Disease: A Translational Study of Neuropathological and Inflammatory Markers

Trine Schütt; Lone Helboe; Lars Østergaard Pedersen; Gunhild Waldemar; Mette Berendt; Jan T. Pedersen

Aged companion dogs with canine cognitive dysfunction (CCD) spontaneously develop varying degrees of progressive cognitive decline and particular neuropathological features correspondent to the changes associated with Alzheimers disease (AD) in humans. The aim of the present study was to characterize certain aspects of neuropathology and inflammatory markers related to aging and CCD in dogs in comparison with human AD. Fifteen brains from aged dogs with normal cognitive function, mild cognitive impairment, or CCD were investigated and compared with two control brains from young dogs and brain sections from human AD subjects. The neuropathological investigations included evaluation of amyloid-β (Aβ) plaque deposition (N-terminally truncated and pyroglutamyl-modified Aβ included), tau pathology, and inflammatory markers in prefrontal cortex. Cortical Aβ deposition was found to be only of the diffuse subtype as no dense-core or neuritic plaques were found. The Aβ deposition followed a progressive pattern in four maturation stages. Accumulation of the Aβ peptide was also observed in the vessel walls. Both immunohistochemically and biochemically measured levels of Aβ pathology in prefrontal cortex showed a consistent positive correlation to age but not to cognitive deficit severity. No evidence of neurofibrillary tau pathology was found. The level of pro-inflammatory cytokines was generally low and showed no significant association to cognitive status. The findings of the present study support the senescent dog with spontaneous cognitive dysfunction as a valuable non-transgenic model for further investigations of the molecular events involved in the neurodegenerative processes associated with aging and early stage AD, especially the Aβ-related pathology.


Journal of Neurochemistry | 2009

Differential effects of γ-secretase and BACE1 inhibition on brain Aβ levels in vitro and in vivo

Anders Brandt Elvang; Christiane Volbracht; Lars Østergaard Pedersen; Klaus Gjervig Jensen; Jens-Jakob Karlsson; Stine Anna Larsen; Arne Mørk; Tine B. Stensbøl; Jesper F. Bastlund

Alzheimer’s disease (AD) is hypothesized to result from elevated brain levels of β‐amyloid peptide (Aβ) which is the main component of plaques found in AD brains and which cause memory impairment in mice. Therefore, there has been a major focus on the development of inhibitors of the Aβ producing enzymes γ‐secretase and β‐site amyloid precursor protein‐cleaving enzyme 1 (BACE1). In this study, we investigated the Aβ‐lowering effects of the BACE1 inhibitor LY2434074 in vitro and in vivo, comparing it to the well characterized γ‐secretase inhibitor LY450139. We sampled interstitial fluid Aβ from awake APPswe/PS1dE9 AD mice by in vivo Aβ microdialysis. In addition, we measured levels of endogenous brain Aβ extracted from wildtype C57BL/6 mice. In our in vitro assays both compounds showed similar Aβ‐lowering effects. However, while systemic administration of LY450139 resulted in transient reduction of Aβ in both in vivo models, we were unable to show any Aβ‐lowering effect by systemic administration of the BACE1 inhibitor LY2434074 despite brain exposure exceeding the in vitro IC50 value several fold. In contrast, significant reduction of 40–50% of interstitial fluid Aβ and wildtype cortical Aβ was observed when infusing LY2434074 directly into the brain by means of reverse microdialysis or by dosing the BACE1 inhibitor to p‐glycoprotein (p‐gp) mutant mice. The effects seen in p‐gp mutant mice and subsequent data from our cell‐based p‐gp transport assay suggested that LY2434074 is a p‐gp substrate. This may partly explain why BACE1 inhibition by LY2434074 has lower in vivo efficacy, with respect to decreased Aβ40 levels, compared with γ‐secretase inhibition by LY450139.


Journal of Cellular and Molecular Medicine | 2009

Cognitive impairment in the Tg6590 transgenic rat model of Alzheimer’s disease

Ewa Kloskowska; Therese M. Pham; Tatjana Nilsson; Shunwei Zhu; Johanna Öberg; Alina Codita; Lars Østergaard Pedersen; Jan T. Pedersen; Katarzyna Malkiewicz; Bengt Winblad; Ronnie Folkesson; Eirikur Benedikz

Recently, interest in the rat as an animal model of Alzheimer’s disease (AD) has been growing. We have previously described the Tg6590 transgenic rat line expressing the amyloid precursor protein containing the Swedish AD mutation (K670M/N671L) that shows early stages of Aβ deposition, predominantly in cerebrovascular blood vessels, after 15 months of age. Here we show that by the age of 9 months, that is long before the appearance of Aβ deposits, the Tg6590 rats exhibit deficits in the Morris water maze spatial navigation task and altered spontaneous behaviour in the open‐field test. The levels of soluble Aβ were elevated both in the hippocampus and cortex of transgenic animals. Magnetic resonance imaging showed no major changes in the brains of transgenic animals, although they tended to have enlarged lateral ventricles when compared to control animals. The Tg6590 transgenic rat line should prove a suitable model of early AD for advanced studies including serial cerebrospinal fluid sampling, electrophysiology, neuroimaging or complex behavioural testing.


Brain Research | 2014

t-PA, but not desmoteplase, induces plasmin-dependent opening of a blood-brain barrier model under normoxic and ischaemic conditions.

Roxann Freeman; Be’eri Niego; David R. Croucher; Lars Østergaard Pedersen; Robert L. Medcalf

Tissue-type plasminogen activator (t-PA) is the only thrombolytic treatment available for patients with acute ischaemic stroke. However, t-PA can increase permeability of the blood-brain barrier (BBB). Desmoteplase is a plasminogen activator derived from the common vampire bat, currently under clinical development for ischaemic stroke. We compared how t-PA and desmoteplase influenced BBB permeability using a human in vitro model where primary brain endothelial cells (BEC) and astrocytes are co-cultured on the opposite sides of a porous membrane. Permeability changes were evaluated 6 or 24h post-stimulation by passage of fluorescent albumin across the membrane. Under normoxic conditions, t-PA, but not desmoteplase, increased BBB permeability. Surprisingly, the ability of t-PA to affect the barrier was lost under conditions of oxygen-glucose deprivation (OGD). Addition of plasminogen re-sensitised the BBB to the action of t-PA under both normoxia and OGD, but did not affect the inert behaviour of desmoteplase, even when digested fibrinogen was added to ensure optimal plasmin generation. These observations coincided with plasmin-dependent changes in astrocyte and BEC morphology and disruption of tight junction proteins in BECs, specifically initiated by t-PA but not by desmoteplase. Finally, inhibition of plasmin post-stimulation with t-PA and plasminogen, especially within 2h, protected the BBB against t-PA-mediated barrier opening. Hence t-PA, but not desmoteplase, increases BBB permeability under both normoxic and OGD conditions in a reversible, plasmin-dependent process. The inability of desmoteplase to increase permeability despite its capacity to generate plasmin provides further support for its use as thrombolytic in patients with ischaemic stroke.


Molecular Neurodegeneration | 2017

Autoimmune antibody decline in Parkinson’s disease and Multiple System Atrophy; a step towards immunotherapeutic strategies

Tomasz Brudek; Kristian Winge; Jonas Folke; Søren Christensen; Karina Fog; Bente Pakkenberg; Lars Østergaard Pedersen

BackgroundParkinson’s’ disease (PD) and Multiple System Atrophy (MSA) are progressive brain disorders characterized by intracellular accumulations of α-synuclein and nerve cell loss in specific brain areas. This loss causes problems with movement, balance and/or autonomic functions. Naturally occurring autoantibodies (NAbs) play potentially an important role in clearing or/and blocking circulating pathological proteins. Little is known about the functional properties of anti-α-synuclein NAbs in PD and MSA, and there have been opposing reports regarding their plasma concentrations in these disorders.MethodsWe have investigated the apparent affinity of anti-α-synuclein NAbs in plasma samples from 46 PD patients, 18 MSA patients and 41 controls using competitive enzyme-linked immunosorbent assay (ELISA) and Meso Scale Discovery (MSD) set-ups.ResultsWe found that the occurrence of high affinity anti-α-synuclein NAbs in plasma from PD patients is reduced compared to healthy controls, and nearly absent in plasma from MSA patients. Also, levels of α-synuclein/NAbs immunocomplexes is substantially reduced in plasma from both patient groups. Further, cross binding of anti-α-synuclein NAbs with β- and γ-synuclein monomers suggest, the high affinity anti-α-synuclein plasma component, seen in healthy individuals, is directed mainly against C-terminal epitopes. Furthermore, we also observed reduced occurrence of high affinity anti-phosphorylated-α-synuclein NAbs in plasma from PD and MSA patients.ConclusionsOne interpretation implies that these patients may have impaired ability to clear and/or block the effects of pathological α-synuclein due to insufficient/absent concentration of NAbs and as such provides a rationale for testing immune-based therapeutic strategies directed against pathological α-synuclein. Following this interpretation, we can hypothesize that high affinity autoantibodies efficiently bind and clear potentially pathological species of α-synuclein in healthy brain, and that this mechanism is impaired or absent in PD and MSA patients.


Biophysical Chemistry | 2017

Antibodies against the C-terminus of α-synuclein modulate its fibrillation

Cagla Sahin; Nikolai Lorenzen; Lasse Lemminger; Gunna Christiansen; Ian Max Møller; Louise Buur Vesterager; Lars Østergaard Pedersen; Karina Fog; Pekka Kallunki; Daniel E. Otzen

The 140-residue natively disordered protein α-synuclein (aSN) is a central component in the development of a family of neurodegenerative diseases termed synucleinopathies. This is attributed to its ability to form cytotoxic aggregates such as oligomers and amyloid fibrils. Consequently there have been intense efforts to avoid aggregation or reroute the aggregation pathway using pharmaceutical agents such as small molecules, chaperones and antibodies. aSNs lack of persistent structure in the monomeric state, as well as the multitude of different oligomeric and even different fibrillar states, makes it difficult to raise antibodies that would be efficacious in neutralizing all conformations of aSN. However, the C-terminal 20-40 residues of aSN are a promising epitope for antibody development. It is primarily disordered in both monomeric and aggregated forms, and an anti-C-terminal antibody will therefore be able to bind all forms. Furthermore, it might not interfere with the folding of aSN into membranes, which could be important for its physiological role. Here we report a screen of a series of monoclonal antibodies, which all target the C-terminal of aSN. According to dot blot analyses, different antibodies bound different forms of aSN with different preferences and showed reduced binding to monomeric compared to aggregated (oligomeric and fibrillary) aSN. Consequently they have different effects on aSNs ability to fibrillate and permeabilize membranes. Generally, the antibodies with strongest binding to aggregated aSN in dot blot, also inhibited fibrillation and membrane permeabilization the most, and promoted formation of amorphous aggregates surrounded by small and thin fibers. This suggests that the development of antibodies that targets the C-terminus, exposed in the aggregated forms of aSN, may be beneficial for improved immunotherapy against PD.


Journal of Neuroimmunology | 2014

Immunostimulant patches containing Escherichia coli LT enhance immune responses to DNA- and recombinant protein-based Alzheimer's disease vaccines.

Hayk Davtyan; Anahit Ghochikyan; Armine Hovakimyan; Irina Petrushina; Jianmei Yu; David Flyer; Peter Juul Madsen; Lars Østergaard Pedersen; David H. Cribbs; Michael G. Agadjanyan

Immunotherapeutic approaches to treating Alzheimers disease (AD) using vaccination strategies must overcome the obstacle of achieving adequate responses to vaccination in the elderly. Here we demonstrate for the first time that application of the Escherichia coli heat-labile enterotoxin adjuvant-laden immunostimulatory patches (LT-IS) dramatically enhances the onset and magnitude of immune responses to DNA- and protein-based vaccines for Alzheimers disease following intradermal immunization via gene gun and conventional needles, respectively. Our studies suggest that the immune activation mediated by LT-IS offers improved potency for generating AD-specific vaccination responses that should be investigated as an adjuvant in the clinical arena.

Collaboration


Dive into the Lars Østergaard Pedersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lone Helboe

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Cerami

Kenneth S. Warren Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge