Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars-Peter Erwig is active.

Publication


Featured researches published by Lars-Peter Erwig.


Infection and Immunity | 2010

Contribution of Candida albicans Cell Wall Components to Recognition by and Escape from Murine Macrophages

C. G. J. McKenzie; U. Koser; L. E. Lewis; Judith M. Bain; H. M. Mora-Montes; R. N. Barker; Neil A. R. Gow; Lars-Peter Erwig

ABSTRACT The pathogenicity of the opportunistic human fungal pathogen Candida albicans depends on its ability to escape destruction by the host immune system. Using mutant strains that are defective in cell surface glycosylation, cell wall protein synthesis, and yeast-hypha morphogenesis, we have investigated three important aspects of C. albicans innate immune interactions: phagocytosis by primary macrophages and macrophage cell lines, hyphal formation within macrophage phagosomes, and the ability to escape from and kill macrophages. We show that cell wall glycosylation is critically important for the recognition and ingestion of C. albicans by macrophages. Phagocytosis was significantly reduced for mutants deficient in phosphomannan biosynthesis (mmn4Δ, pmr1Δ, and mnt3 mnt5Δ), whereas O- and N-linked mannan defects (mnt1Δ mnt2Δ and mns1Δ) were associated with increased ingestion, compared to the parent wild-type strains and genetically complemented controls. In contrast, macrophage uptake of mutants deficient in cell wall proteins such as adhesins (ece1Δ, hwp1Δ, and als3Δ) and yeast-locked mutants (clb2Δ, hgc1Δ, cph1Δ, efg1Δ, and efg1Δ cph1Δ), was similar to that observed for wild-type C. albicans. Killing of macrophages was abrogated in hypha-deficient strains, significantly reduced in all glycosylation mutants, and comparable to wild type in cell wall protein mutants. The diminished ability of glycosylation mutants to kill macrophages was not a consequence of impaired hyphal formation within macrophage phagosomes. Therefore, cell wall composition and the ability to undergo yeast-hypha morphogenesis are critical determinants of the macrophages ability to ingest and process C. albicans.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by Rho GTPases and ezrin–radixin–moesin (ERM) proteins

Lars-Peter Erwig; Kathleen A. McPhilips; Murray W. Wynes; Alexander Ivetic; Anne J. Ridley; Peter M. Henson

Deletion of apoptotic cells from tissues involves their phagocytosis by macrophages, dendritic cells, and tissue cells. Although much attention has been focused on the participating ligands, receptors, and mechanisms of uptake, little is known of the disposition of the ingested cell within the phagosome. Here we show that uptake of apoptotic cells by macrophages or fibroblasts results in rapid phagosome maturation, whereas macrophage phagosomes containing Ig-opsonized target cells mature at a slower rate. The early maturation was shown to depend on activation of Rho acting through Rho kinase on ezrin–radixin–moesin proteins. Blockade of Rho signaling or inhibition of moesin both delayed maturation rates to those seen with opsonized targets. By contrast, phagosome maturation in dendritic cells was slower, similar between apoptotic and opsonized target cells, and unaffected by Rho inhibition. These observations have direct implications for the clearance of dying cells and the roles played by different phagocytes in antigen digestion and presentation.


PLOS Pathogens | 2012

Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants.

Leanne E. Lewis; Judith M. Bain; Christina Lowes; Collette Gillespie; Fiona M. Rudkin; Neil A. R. Gow; Lars-Peter Erwig

Candida albicans is a major life-threatening human fungal pathogen. Host defence against systemic Candida infection relies mainly on phagocytosis of fungal cells by cells of the innate immune system. In this study, we have employed video microscopy, coupled with sophisticated image analysis tools, to assess the contribution of distinct C. albicans cell wall components and yeast-hypha morphogenesis to specific stages of phagocytosis by macrophages. We show that macrophage migration towards C. albicans was dependent on the glycosylation status of the fungal cell wall, but not cell viability or morphogenic switching from yeast to hyphal forms. This was not a consequence of differences in maximal macrophage track velocity, but stems from a greater percentage of macrophages pursuing glycosylation deficient C. albicans during the first hour of the phagocytosis assay. The rate of engulfment of C. albicans attached to the macrophage surface was significantly delayed for glycosylation and yeast-locked morphogenetic mutant strains, but enhanced for non-viable cells. Hyphal cells were engulfed at a slower rate than yeast cells, especially those with hyphae in excess of 20 µm, but there was no correlation between hyphal length and the rate of engulfment below this threshold. We show that spatial orientation of the hypha and whether hyphal C. albicans attached to the macrophage via the yeast or hyphal end were also important determinants of the rate of engulfment. Breaking down the overall phagocytic process into its individual components revealed novel insights into what determines the speed and effectiveness of C. albicans phagocytosis by macrophages.


Clinical and Experimental Immunology | 2002

Antigen presentation by macrophages is enhanced by the uptake of necrotic, but not apoptotic, cells

Robert N. Barker; Lars-Peter Erwig; K. S. K. Hill; Anne Devine; Wayne P. Pearce; Andrew J. Rees

The aim of this study was to determine whether phagocytosis of necrotic or apoptotic cells affects antigen presentation by murine bone marrow‐derived macrophages. After uptake of necrotic neutrophils, macrophages were able to stimulate significantly higher T cell proliferation in vitro against both the recall antigen albumin and the mitogen concanavalin A. No such effect was seen following phagocytosis of apoptotic neutrophils. Flow cytometry revealed that, within 4h of ingestion, macrophages that had taken up the necrotic cells expressed higher levels of CD40 than those that had phagocytosed apoptotic cells. Macrophage cultures pulsed with apoptotic, but not necrotic, neutrophils contained higher levels of transforming growth factor β1, but lower concentrations of tumour necrosis factor α, compared to untreated controls. Our interpretation of these results is that macrophages that have taken up necrotic neutrophils co‐stimulate T cells with greater efficiency due to rapid CD40 up‐regulation, whereas those that have ingested apoptotic cells are not only ineffective in co‐stimulation, but also secrete inhibitory cytokine.


Pathobiology | 1999

Differential Effects of Necrotic or Apoptotic Cell Uptake on Antigen Presentation by Macrophages

Robert N. Barker; Lars-Peter Erwig; Wayne P. Pearce; Anne Devine; Andrew J. Rees

The induction of pathogenic immune responses may be dependent on the immune system receiving ‘danger’ signals resulting from tissue damage, rather than tolerogenic stimuli associated with normal cell turnover. The aim was to test this hypothesis by comparing the effects of the uptake of necrotic and apoptotic cells on the ability of antigen-presenting cells (APC) to stimulate immune responses in vitro. The experiments focused on presentation by the macrophage, which is the main cell type adapted for clearing cellular debris in vivo. Murine bone marrow-derived macrophages were pulsed with neutrophils that had been rendered apoptotic or necrotic, and tested for the ability to induce T cell responses. The macrophages that had taken up necrotic, but not apoptotic, cells were able to stimulate recall proliferation by ovalbumin-specific T cells. Furthermore, the response to the mitogen concanavalin A (Con A) was more than 6 times higher when macrophages had been pulsed with necrotic, in comparison with apoptotic, cells. In control experiments, macrophages that had not been exposed to dying neutrophils stimulated weak responses to ovalbumin and Con A. To determine why the uptake of apoptotic and necrotic cells exert opposing effects on the ability of macrophages to stimulate T cells, the expression of costimulatory molecules by treated macrophages, and their production of potentially immunomodulatory cytokines were measured. Flow cytometry revealed that macrophages that had taken up necrotic, but not apoptotic, neutrophils expressed increased levels of CD40 compared to untreated controls within 4 h. Macrophages pulsed with apoptotic cells secreted higher levels of transforming growth factor-β1 than those ingesting necrotic cells or untreated controls. Our interpretation of these results is that macrophages that have taken up necrotic cell debris present antigens to T lymphocytes with greater efficiency due to transient CD40 upregulation, whereas those that have ingested apoptotic cells are ineffective APC since they secrete inhibitory cytokine.


Current Vascular Pharmacology | 2009

Macrophages: Promising Targets for the Treatment of Atherosclerosis

Heather M. Wilson; Robert N. Barker; Lars-Peter Erwig

Atherosclerosis is now recognised as a chronic inflammatory disease occurring within the artery wall and ultimately responsible for myocardial infarction, stroke and peripheral vascular disease. A crucial step in atherogenesis is the infiltration of monocytes into the subendothelial space of large arteries where they differentiate into macrophages and become functionally active. Macrophage accumulation within plaques is a hallmark of all stages of atherosclerosis, indeed recent studies have shown their presence has the potential to act as a non-invasive marker of disease activity and plaque stability. Activated macrophages are major players in all stages of lesion development. They not only accumulate lipids but also express effector molecules that are pro-inflammatory, cytotoxic and chemotactic. Furthermore, they secrete enzymes that degrade extracellular matrix leading to plaque destabilisation and increased risk of rupture. However, macrophages are heterogeneous and when appropriately activated they have the potential to drive tissue remodelling and ultimately vascular repair. Pharmacological modulation of macrophage activities therefore represents an important strategy for the prevention and treatment of atherosclerosis and other inflammatory diseases. The aim of this review is to give a brief overview of our current understanding of macrophage activation, distribution and function within inflamed tissue. This will provide the basis for highlighting already available and future methods to exploit specifically activated macrophages as diagnostic and therapeutic targets for atherosclerosis.


Fungal Genetics and Biology | 2012

Non-lytic expulsion/exocytosis of Candida albicans from macrophages

Judith M. Bain; Leanne E. Lewis; Blessing Okai; Janet Quinn; Neil A. R. Gow; Lars-Peter Erwig

Candida albicans is an opportunistic pathogen and is recognised and phagocytosed by macrophages. Using live-cell imaging, non-lytic expulsion/exocytosis of C. albicans from macrophages is demonstrated for the first time. Following complete expulsion, both the phagocyte and pathogen remain intact and viable. Partial engulfment of hyphal C. albicans without macrophage lysis is also demonstrated. These observations underpin the complexity of interactions between C. albicans and innate immune cells.


American Journal of Pathology | 2000

Macrophages from Inflamed but Not Normal Glomeruli Are Unresponsive to Anti-Inflammatory Cytokines

Lars-Peter Erwig; Keith N. Stewart; Andrew J. Rees

This study examined the properties and responsiveness to cytokines of macrophages purified from normal and nephritic glomeruli to ascertain whether macrophages activated in vivo develop programmed unresponsiveness to cytokines as do bone marrow-derived macrophages in vitro when activated by interferon-gamma (IFN-gamma), tumor necrosis factor (TNF), interleukin-4 (IL-4), or transforming growth factor-beta (TGF-beta). Macrophages from normal glomeruli did not generate nitric oxide (NO) spontaneously but only after treatment with IFN-gamma and TNF-alpha. NO generation by these macrophages was abrogated by administering IL-4, TGF-beta, or TNF-alpha before but not after IFN-gamma treatment. Glomerular macrophages also expressed beta-glucuronidase, which was increased by TGF-beta and decreased by IFN-gamma and TNF. By contrast, glomerular macrophages from rats with nephrotoxic nephritis did not express beta-glucuronidase even after exposure to TGF-beta. Furthermore, they generated NO spontaneously, and this spontaneous generation of NO was not suppressed by IL-4, TGF-beta, or TNF-alpha. Systemic treatment of nephritic rats with IL-4 reduced NO generation by 40% but did not prevent activation, which is similar to the effect of IL-4 on bone marrow-derived macrophages in vitro when given simultaneously with IFN-gamma. We conclude that macrophages infiltrating inflamed glomeruli have developed programmed unresponsiveness to activating cytokines. This may enable them to function appropriately in the complex conditions within an inflammatory focus.


Antioxidants & Redox Signaling | 2013

Ybp1 and Gpx3 Signaling in Candida albicans Govern Hydrogen Peroxide-Induced Oxidation of the Cap1 Transcription Factor and Macrophage Escape

Miranda J. Patterson; Christopher G. McKenzie; Deborah A. Smith; Alessandra da Silva Dantas; Sam Sherston; Elizabeth A. Veal; Brian A. Morgan; Donna M. MacCallum; Lars-Peter Erwig; Janet Quinn

AIMS As Candida albicans is the major fungal pathogen of humans, there is an urgent need to understand how this pathogen evades toxic reactive oxygen species (ROS) generated by the host immune system. A key regulator of antioxidant gene expression, and thus ROS resistance, in C. albicans is the AP-1-like transcription factor Cap1. Despite this, little is known regarding the intracellular signaling mechanisms that underlie the oxidation and activation of Cap1. Therefore, the aims of this study were; (i) to identify the regulatory proteins that govern Cap1 oxidation, and (ii) to investigate the importance of Cap1 oxidation in C. albicans pathogenesis. RESULTS In response to hydrogen peroxide (H2O2), but not glutathione-depleting/modifying oxidants, Cap1 oxidation, nuclear accumulation, phosphorylation, and Cap1-dependent gene expression, is mediated by a glutathione peroxidase-like enzyme, which we name Gpx3, and an orthologue of the Saccharomyces cerevisiae Yap1 binding protein, Ybp1. In addition, Ybp1 also functions to stabilise Cap1 and this novel function is conserved in S. cerevisiae. C. albicans cells lacking Cap1, Ybp1, or Gpx3, are unable to filament and thus, escape from murine macrophages after phagocytosis, and also display defective virulence in the Galleria mellonella infection model. INNOVATION Ybp1 is required to promote the stability of fungal AP-1-like transcription factors, and Ybp1 and Gpx3 mediated Cap1-dependent oxidative stress responses are essential for the effective killing of macrophages by C. albicans. CONCLUSION Activation of Cap1, specifically by H2O2, is a prerequisite for the subsequent filamentation and escape of this fungal pathogen from the macrophage.


Current Opinion in Nephrology and Hypertension | 2001

Macrophages in renal inflammation.

Lars-Peter Erwig; David C. Kluth; Andrew J. Rees

This review describes recent advances in macrophage biology in the context of renal inflammation. It highlights the importance of the activated macrophage for the progression and resolution of renal disease, and discusses recent and potential future approaches to modify macrophage function selectively within the kidney to activate them specifically to promote the healing of kidney disease.

Collaboration


Dive into the Lars-Peter Erwig's collaboration.

Top Co-Authors

Avatar

Andrew J. Rees

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Rees

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Devine

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge