Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Riedemann is active.

Publication


Featured researches published by Lars Riedemann.


Cell | 2013

Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma

Matija Snuderl; Ana Batista; Nathaniel D. Kirkpatrick; Carmen Ruiz de Almodovar; Lars Riedemann; Elisa C. Walsh; Rachel Anolik; Yuhui Huang; John D. Martin; Walid S. Kamoun; Ellen Knevels; Thomas Schmidt; Christian T. Farrar; Benjamin J. Vakoc; Nishant Mohan; Euiheon Chung; Sylvie Roberge; Teresa Peterson; Carlos Bais; Boryana Zhelyazkova; Stephen Yip; Martin Hasselblatt; Claudia Rossig; Elisabeth Niemeyer; Napoleone Ferrara; Michael Klagsbrun; Dan G. Duda; Dai Fukumura; Lei Xu; Peter Carmeliet

Medulloblastoma is the most common pediatric malignant brain tumor. Although current therapies improve survival, these regimens are highly toxic and are associated with significant morbidity. Here, we report that placental growth factor (PlGF) is expressed in the majority of medulloblastomas, independent of their subtype. Moreover, high expression of PlGF receptor neuropilin 1 (Nrp1) correlates with poor overall survival in patients. We demonstrate that PlGF and Nrp1 are required for the growth and spread of medulloblastoma: PlGF/Nrp1 blockade results in direct antitumor effects in vivo, resulting in medulloblastoma regression, decreased metastasis, and increased mouse survival. We reveal that PlGF is produced in the cerebellar stroma via tumor-derived Sonic hedgehog (Shh) and show that PlGF acts through Nrp1-and not vascular endothelial growth factor receptor 1-to promote tumor cell survival. This critical tumor-stroma interaction-mediated by Shh, PlGF, and Nrp1 across medulloblastoma subtypes-supports the development of therapies targeting PlGF/Nrp1 pathway.


Nature Communications | 2014

Magneto-fluorescent core-shell supernanoparticles

Ou Chen; Lars Riedemann; Fred Etoc; Hendrik Herrmann; Mathieu Coppey; Mariya; Christian T. Farrar; Jing Zhao; Oliver T. Bruns; He Wei; Peng Guo; Jian Cui; Russ Jensen; Yue Chen; Daniel K. Harris; Jose M. Cordero; Zhongwu Wang; Alan Jasanoff; Dai Fukumura; Rudolph Reimer; Maxime Dahan; Rakesh K. Jain; Moungi G. Bawendi

Magneto-fluorescent particles have been recognized as an emerging class of materials that exhibit great potential in advanced applications. However, synthesizing such magneto-fluorescent nanomaterials that simultaneously exhibit uniform and tunable sizes, high magnetic content loading, maximized fluorophore coverage at the surface, and a versatile surface functionality has proven challenging. Here we report a simple approach for co-assembling magnetic nanoparticles with fluorescent quantum dots to form colloidal magneto-fluorescent supernanoparticles. Importantly, these supernanoparticles exhibit a superstructure consisting of a close packed magnetic nanoparticle “core” which is fully surrounded by a “shell” of fluorescent quantum dots. A thin layer of silica-coating provides high colloidal stability and biocompatiblity and a versatile surface functionality. We demonstrate that after surface pegylation, these silica-coated magneto-fluorescent supernanoparticles can be magnetically manipulated inside living cells while being optically tracked. Moreover, our silica-coated magneto-fluorescent supernanoparticles can also serve as an in vivo multi-photon and magnetic resonance dual-modal imaging probe.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival

Jonas Kloepper; Lars Riedemann; Zohreh Amoozgar; Giorgio Seano; Katharina Susek; Veronica Yu; Nisha Dalvie; Robin L. Amelung; Meenal Datta; Jonathan W. Song; Vasileios Askoxylakis; Jennie Taylor; Christine Lu-Emerson; Ana Batista; Nathaniel D. Kirkpatrick; Keehoon Jung; Matija Snuderl; Alona Muzikansky; Kay Stubenrauch; Oliver Krieter; Hiroaki Wakimoto; Lei Xu; Dan G. Duda; Dai Fukumura; Tracy T. Batchelor; Rakesh K. Jain

Significance Improving survival of patients with glioblastoma (GBM) using antiangiogenic therapy remains a challenge. In this study we show that dual blockade of angiopoietin-2 and vascular endothelial growth factor delays tumor growth and enhances survival benefits through reprogramming of tumor-associated macrophages toward an antitumor phenotype as well as by pruning immature tumor vessels. The antitumor immunomodulatory potential of this dual blockade supports clinical testing of this approach for GBM with other immunotherapeutic approaches such as checkpoint blockers. Inhibition of the vascular endothelial growth factor (VEGF) pathway has failed to improve overall survival of patients with glioblastoma (GBM). We previously showed that angiopoietin-2 (Ang-2) overexpression compromised the benefit from anti-VEGF therapy in a preclinical GBM model. Here we investigated whether dual Ang-2/VEGF inhibition could overcome resistance to anti-VEGF treatment. We treated mice bearing orthotopic syngeneic (Gl261) GBMs or human (MGG8) GBM xenografts with antibodies inhibiting VEGF (B20), or Ang-2/VEGF (CrossMab, A2V). We examined the effects of treatment on the tumor vasculature, immune cell populations, tumor growth, and survival in both the Gl261 and MGG8 tumor models. We found that in the Gl261 model, which displays a highly abnormal tumor vasculature, A2V decreased vessel density, delayed tumor growth, and prolonged survival compared with B20. In the MGG8 model, which displays a low degree of vessel abnormality, A2V induced no significant changes in the tumor vasculature but still prolonged survival. In both the Gl261 and MGG8 models A2V reprogrammed protumor M2 macrophages toward the antitumor M1 phenotype. Our findings indicate that A2V may prolong survival in mice with GBM by reprogramming the tumor immune microenvironment and delaying tumor growth.


Neuro-oncology | 2013

Increase in tumor-associated macrophages after antiangiogenic therapy is associated with poor survival among patients with recurrent glioblastoma

Christine Lu-Emerson; Matija Snuderl; Nathaniel D. Kirkpatrick; Jermaine Goveia; Christian Davidson; Yuhui Huang; Lars Riedemann; Jennie Taylor; Percy Ivy; Dan G. Duda; Marek Ancukiewicz; Scott R. Plotkin; Andrew S. Chi; Elizabeth R. Gerstner; April F. Eichler; Jorg Dietrich; Anat Stemmer-Rachamimov; Tracy T. Batchelor; Rakesh K. Jain

Antiangiogenic therapy is associated with increased radiographic responses in glioblastomas, but tumors invariably recur. Because tumor-associated macrophages have been shown to mediate escape from antiangiogenic therapy in preclinical models, we examined the role of macrophages in patients with recurrent glioblastoma. We compared autopsy brain specimens from 20 patients with recurrent glioblastoma who received antiangiogenic treatment and chemoradiation with 8 patients who received chemotherapy and/or radiotherapy without antiangiogenic therapy or no treatment. Tumor-associated macrophages were morphologically and phenotypically analyzed using flow cytometry and immunohistochemistry for CD68, CD14, CD163, and CD11b expression. Flow cytometry showed an increase in macrophages in the antiangiogenic-treated patients. Immunohistochemical analysis demonstrated an increase in CD68+ macrophages in the tumor bulk (P < .01) and infiltrative areas (P = .02) in antiangiogenic-treated patients. We also observed an increase in CD11b+ cells in the tumor bulk (P < .01) and an increase in CD163+ macrophages in infiltrative tumor (P = .02). Of note, an increased number of CD11b+ cells in bulk and infiltrative tumors (P = .05 and P = .05, respectively) correlated with poor overall survival among patients who first received antiangiogenic therapy at recurrence. In summary, recurrent glioblastomas showed an increased infiltration in myeloid populations in the tumor bulk and in the infiltrative regions after antiangiogenic therapy. Higher numbers of CD11b+ cells correlated with poor survival among these patients. These data suggest that tumor-associated macrophages may participate in escape from antiangiogenic therapy and may represent a potential biomarker of resistance and a potential therapeutic target in recurrent glioblastoma.


Nature Biomedical Engineering | 2017

Next-generation in vivo optical imaging with short-wave infrared quantum dots

Oliver T. Bruns; Thomas S. Bischof; Daniel K. Harris; Daniel Franke; Yanxiang Shi; Lars Riedemann; Alexander Bartelt; Frank B. Jaworski; Jessica A. Carr; Christopher J. Rowlands; Mark W. Wilson; Ou Chen; He Wei; Gyu Weon Hwang; Daniel M. Montana; Igor Coropceanu; Odin B. Achorn; Jonas Kloepper; Joerg Heeren; Peter T. C. So; Dai Fukumura; Klavs F. Jensen; Rakesh K. Jain; Moungi G. Bawendi

For in vivo imaging, the short-wavelength infrared region (SWIR; 1000–2000 nm) provides several advantages over the visible and near-infrared regions: general lack of autofluorescence, low light absorption by blood and tissue, and reduced scattering. However, the lack of versatile and functional SWIR emitters has prevented the general adoption of SWIR imaging by the biomedical research community. Here, we introduce a class of high-quality SWIR-emissive indium-arsenide-based quantum dots (QDs) that are readily modifiable for various functional imaging applications, and that exhibit narrow and size-tunable emission and a dramatically higher emission quantum yield than previously described SWIR probes. To demonstrate the unprecedented combination of deep penetration, high spatial resolution, multicolor imaging and fast-acquisition-speed afforded by the SWIR QDs, we quantified, in mice, the metabolic turnover rates of lipoproteins in several organs simultaneously and in real time as well as heartbeat and breathing rates in awake and unrestrained animals, and generated detailed three-dimensional quantitative flow maps of the mouse brain vasculature.


Molecular Cancer Therapeutics | 2012

REST Is a Novel Prognostic Factor and Therapeutic Target for Medulloblastoma

Pete Taylor; Jason Fangusaro; Veena Rajaram; Stewart Goldman; Irene B. Helenowski; Tobey J. MacDonald; Martin Hasselblatt; Lars Riedemann; Álvaro Macedo Laureano; Laurence J.N. Cooper; Vidya Gopalakrishnan

Medulloblastoma is a malignant pediatric brain tumor. Current treatment following patient stratification into standard and high-risk groups using clinical features has improved survival. However, a subset of patients with standard risk features have unanticipated aggressive disease, underscoring the need for a better understanding of tumor biology and the development of novel treatments. Poor differentiation, a hallmark of medulloblastomas is associated with elevated expression levels of the repressor of neuronal differentiation called repressor element 1-silencing transcription factor (REST). Here, we assessed whether elevated REST expression levels had prognostic significance and whether its pharmacologic manipulation would promote neurogenesis and block tumor cell growth. REST levels in patient tumors were measured by immunohistochemistry and stratified into negative, low/moderate- (+/++/+++), and high-REST (+++++) groups. Kaplan–Meier curves revealed that patients with high-REST tumors had worse overall and event-free survival compared with patients with REST-negative or REST-low tumors. Because histone deacetylases (HDAC) are required for REST-dependent repression of neurogenesis, we evaluated a panel of HDAC inhibitors (HDACI) for their effects on growth and differentiation of established and primary REST-positive cell lines. MS-275, trichostatin-A (TSA), valproic acid (VPA), and suberoylanilide hydroxamic acid (SAHA) upregulated expression of the REST-target neuronal differentiation gene, Syn1, suggesting a potential effect of these HDACIs on REST function. Interestingly, VPA and TSA substantially increased histone acetylation at the REST promoter and activated its transcription, whereas SAHA unexpectedly promoted its proteasomal degradation. A REST-dependent decrease in cell growth was also observed following SAHA treatment. Thus, our studies suggest that HDACIs may have therapeutic potential for patients with REST-positive tumors. This warrants further investigation. Mol Cancer Ther; 11(8); 1713–23. ©2012 AACR.


Developmental Cell | 2017

YAP/TAZ Orchestrate VEGF Signaling during Developmental Angiogenesis

Xiaohong Wang; Aida Freire Valls; Géza Schermann; Ying Shen; Iván M. Moya; Laura Castro; Severino Urban; Gergely Solecki; Frank Winkler; Lars Riedemann; Rakesh K. Jain; Massimilano Mazzone; Thomas Schmidt; Tamás Fischer; Georg Halder; Carmen Ruiz de Almodovar

Vascular endothelial growth factor (VEGF) is a major driver of blood vessel formation. However, the signal transduction pathways culminating in the biological consequences of VEGF signaling are only partially understood. Here, we show that the Hippo pathway effectors YAP and TAZ work as crucial signal transducers to mediate VEGF-VEGFR2 signaling during angiogenesis. We demonstrate that YAP/TAZ are essential for vascular development as endothelium-specific deletion of YAP/TAZ leads to impaired vascularization and embryonic lethality. Mechanistically, we show that VEGF activates YAP/TAZ via its effects on actin cytoskeleton and that activated YAP/TAZ induce a transcriptional program to further control cytoskeleton dynamics and thus establish a feedforward loop that ensures a proper angiogenic response. Lack of YAP/TAZ also results in altered cellular distribution of VEGFR2 due to trafficking defects from the Golgi apparatus to the plasma membrane. Altogether, our study identifies YAP/TAZ as central mediators of VEGF signaling and therefore as important regulators of angiogenesis.


Cancer Journal | 2015

Targeting the Tumor Microenvironment to Enhance Pediatric Brain Cancer Treatment.

Ana Batista; Lars Riedemann; Trupti Vardam; Rakesh K. Jain

Strategies targeting the microenvironment of pediatric brain cancers have the potential to improve the efficacy of standard and genome-based molecular therapeutics. These strategies also have the potential of helping resolve many of the challenges associated with developing new drugs and running clinical trials for relatively small pediatric brain tumor population. Disrupting vital paracrine and physical interactions between cancer cells and surrounding stroma, targeting and normalizing the abnormal tumor vasculature, and/or inducing antitumor immunity represent some of the most promising approaches. A comprehensive characterization of the pediatric brain tumor microenvironments composition and function and its modulation by chemoradiation and molecularly targeted therapies is warranted to develop and effectively implement these approaches.


Cancer Research | 2016

Abstract LB-347: Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival

Jonas Kloepper; Lars Riedemann; Zohreh Amoozgar; Giorgio Seano; Katharina Susek; Veronica Yu; Nisha Dalvie; Robin L. Amelung; Meenal Datta; Jonathan W. Song; Vasileios Askoxylakis; Jennie Taylor; Christine Lu-Emerson; Ana Batista; Nathaniel D. Kirkpatrick; Keehoon Jung; Matija Snuderl; Alona Muzikansky; Kay G. Stubenrauch; Oliver Krieter; Hiroaki Wakimoto; Lei Xu; Dan G. Duda; Dai Fukumura; Tracy T. Batchelor; Rakesh K. Jain

OBJECTIVE: We aimed to enhance the efficacy of anti-VEGF therapy in glioblastoma (GBM) through additional inhibition of Angiopoietin-2 (Ang-2), a potential mediator of resistance to antiangiogenic therapy using VEGF inhibition. INTRODUCTION: Glioblastoma (GBM) is a uniformly lethal primary brain tumor affecting more than 12.000 patients every year in the US alone. The standard therapy regimen for this highly angiogenic tumor entity comprises maximal safe resection and chemoradiation with temozolomide. The addition of antiangiogenic (anti-VEGF) therapy to the standard of care regimen improved progression-free survival, but failed to improve overall survival of GBM patients. Preclinical and clinical data suggest that resistance to anti-VEGF therapy in GBM is mediated by Ang-2, making this pathway a potential target. EXPERIMENTAL DESIGN: We tested the effect of dual Ang-2/VEGF blockade with A2V on mouse survival using a syngeneic (Gl261) model and a human xenograft (MGG8) model, compared to anti-VEGF antibody therapy (B20). In addition, we used blood-based Gaussian Luciferase (GLUC) assays, immunohistochemistry and flow cytometry to measure changes in tumor growth, microvessel density (MVD), and immune microenvironment, respectively. RESULTS: Gl261 tumors have a highly abnormal tumor vasculature. In this model, treatment with A2V reduced MVD compared to B20. The decrease in MVD was due to a reduction in pericyte-low tumor vessels, while pericyte-high vessels were unaffected. These vascular changes were accompanied by reduced tumor burden and enhanced survival. Interestingly, in the MGG8 tumors, which have a vasculature similar to the normal brain, we detected no change in MVD after A2V treatment. Nevertheless, we found a reduced tumor burden and prolonged animal survival in the MGG8 model. Since vascular normalization may impact immune cell infiltration and function in tumors, we next evaluated these cell populations. We found that A2V therapy reduced pro-tumor M2 polarization of macrophages and microglia and reprogrammed these cells toward the M1 phenotype in both the Gl261 and MGG8 models. Collectively, our data indicate that therapy-induced anti-tumor immunity is mediated by M1-type macrophages but not by T-cell infiltration or function. CONCLUSION: Dual Ang-2/VEGF therapy with A2V reprogrammed macrophages and microglia from pro-tumor M2 toward the anti-tumor M1 phenotype in two GBM models, in addition to normalizing vasculature in tumors with abnormal vessels. These data indicate that dual anti-angiogenic therapy has the potential to overcome resistance to anti-VEGF therapy and confer clinical benefits in GBM patients through vascular and immuno-modulatory effects. Citation Format: Jonas Kloepper, Lars Riedemann, Zohreh Amoozgar, Giorgio Seano, Katharina H. Susek, Veronica Yu, Nisha Dalvie, Robin L. Amelung, Meenal Datta, Jonathan W. Song, Vasileios Askoxylakis, Jennie W. Taylor, Christine Lu-Emerson, Ana Batista, Nathaniel D. Kirkpatrick, Keehoon Jung, Matija Snuderl, Alona Muzikansky, Kay G. Stubenrauch, Oliver Krieter, Hiroaki Wakimoto, Lei Xu, Lance L. Munn, Dan G. Duda, Dai Fukumura, Tracy T. Batchelor, Rakesh K. Jain. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-347.


Cancer Research | 2014

Abstract IA17: Targeting placental growth factor/ neuropilin-1 pathway inhibits growth and spread of medulloblastoma

Matija Snurdel; Ana Batista; Nathaniel D. Kirkpatrick; Carmen Ruiz de Almodovar; Lars Riedemann; Teresa Peterson; Napoleone Ferrara; Michael Klagsbrun; Dan G. Duda; Dai Fukumura; Lei Xu; Peter Carmeliet; Rakesh K. Jain

Background: Medulloblastoma (MB) is the most common pediatric brain tumor and a heterogeneous disease. Several studies have characterized tumor genetic heterogeneity with the hope of identifying targets for personalized therapy. In fact, inhibitors of Sonic Hedgehog (Shh) - a developmental pathway aberrantly activated in a subset of MBs - are currently being evaluated. Unfortunately, mutations and potential developmental adverse effects in the pediatric population can limit these therapies. We propose targeting the tumor stroma as an efficacious alternative treatment option. In particular, we aim to identify and target crucial cancer cell-stromal cell crosstalk signaling that sustains tumor growth and spread. In this context, we have evaluated the effects of blocking signaling of Placental Growth Factor (PIGF) - a member of the vascular endothelial growth factor (VEGF) family - that is dispensable in development but relevant during disease, in the growth and progression of MB. Here, we show the expression of PIGF and its receptor Neuropilin-1 (NRP-1) across primary tumors; dissect the mechanisms that regulate PIGF secretion and downstream signaling; and demonstrate the dramatic efficacy of specific anti-PIGF and anti-NRP-1 blocking antibodies in three MB models in vivo. Methods: Expression of PIGF and NRP-1 was analyzed in a cohort of 32 surgical samples of pediatric MBs by immunohistochemistry, array-comparative genomic hybridization, and deep-gene sequencing. The correlation between NRP-1 expression and 5-year overall survival was evaluated retrospectively in an independent, clinically annotated cohort of 42 MBs. Human orthotopic xenograft (D283-Med; D341-Med) and spontaneous (Smo/Smo) established tumors were treated with anti-PIGF (Thrombogenics or Genentech) or anti-NRP-1 (Genentech) antibodies. Tumor growth, progression and response to therapy was followed by 1) clinical evaluation of posterior fossa symptoms and body weight; 2) whole-body luminescence and blood GLuc levels; 3) small animal MRI; or 4) Optical Frequency Domain Imaging (OFDI). Results: We report that: 1) PIGF is expressed by more than 90% of primary pediatric MBs, regardless of their genetic subtype or histological classification; and high expression of NRP-1 correlates with poor overall survival of patients; 2) MB cells release Shh ligands that stimulate paracrine production of stromal PIGF by cerebellar granule neurons; 3) PIGF signals through NRP-1 - and independent of vascular endothelial growth factor receptor 1 (VEGFR1) - to activate the Erk/MEK pathway and sustain tumor survival; 4) Blockade of PIGF or NRP-1 with specific antibodies causes dramatic regression of MB, decreases spinal metastatic burden, and prolongs survival in in vivo orthotopic and spontaneous mouse models. Conclusion: This work identifies PIGF as the first common target across MB subgroups and provides insight into the critical role of tumor-stroma interactions. The study demonstrates that targeting PIGF/NRP-1 may provide a safe and efficient treatment option for pediatric MBs and lays the ground for evaluation of anti-PIGF therapy in clinical trials. Reference: M. Snuderl et al, Cell, 152(2):1065-76 (2013). Citation Format: Matija Snurdel, Ana Batista, Nathaniel Kirkpatrick, Carmen Almodovar, Lars Riedemann, Teresa Peterson, Napoleone Ferrara, Michael Klagsbrun, Dan G. Duda, Dai Fukumura, Lei Xu, Peter Carmeliet, Rakesh Jain. Targeting placental growth factor/ neuropilin-1 pathway inhibits growth and spread of medulloblastoma. [abstract]. In: Proceedings of the AACR Special Conference on Pediatric Cancer at the Crossroads: Translating Discovery into Improved Outcomes; Nov 3-6, 2013; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2013;74(20 Suppl):Abstract nr IA17.

Collaboration


Dive into the Lars Riedemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge