Lars Rohlin
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lars Rohlin.
Journal of Biological Chemistry | 2002
Min Kyu Oh; Lars Rohlin; Katy C. Kao; James C. Liao
This study characterized the transcript profile of Escherichia coli in acetate cultures using DNA microarray on glass slides. Glucose-grown cultures were used as a reference. At the 95% confidence level, 354 genes were up-regulated in acetate, while 370 genes were down-regulated compared with the glucose-grown culture. Generally, more metabolic genes were up-regulated in acetate than other gene groups, while genes involved in cell replication, transcription, and translation machinery tended to be down-regulated. It appears that E. coli commits more resources to metabolism at the expense of growth when cultured in the poor carbon source. The expression profile confirms many known features in acetate metabolism such as the induction of the glyoxylate pathway, tricarboxylic acid cycle, and gluconeogenic genes. It also provided many previously unknown features, including induction of malic enzymes, ppsA, and the glycolate pathway and repression of glycolytic and glucose phosphotransferase genes in acetate. The carbon flux delivered from the malic enzymes and PpsA in acetate was further confirmed by deletion mutations. In general, the gene expression profiles qualitatively agree with the metabolic flux changes and may serve as a predictor for gene function and metabolic flux distribution.
Annals of the New York Academy of Sciences | 2008
Michael J. McInerney; Christopher G. Struchtemeyer; Jessica R. Sieber; Housna Mouttaki; Alfons J. M. Stams; Bernhard Schink; Lars Rohlin; Robert P. Gunsalus
Syntrophic metabolism is diverse in two respects: phylogenetically with microorganisms capable of syntrophic metabolism found in the Deltaproteobacteria and in the low G+C gram‐positive bacteria, and metabolically given the wide variety of compounds that can be syntrophically metabolized. The latter includes saturated fatty acids, unsaturated fatty acids, alcohols, and hydrocarbons. Besides residing in freshwater and marine anoxic sediments and soils, microbes capable of syntrophic metabolism also have been observed in more extreme habitats, including acidic soils, alkaline soils, thermal springs, and permanently cold soils, demonstrating that syntrophy is a widely distributed metabolic process in nature. Recent ecological and physiological studies show that syntrophy plays a far larger role in carbon cycling than was previously thought. The availability of the first complete genome sequences for four model microorganisms capable of syntrophic metabolism provides the genetic framework to begin dissecting the biochemistry of the marginal energy economies and interspecies interactions that are characteristic of the syntrophic lifestyle.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Michael J. McInerney; Lars Rohlin; Housna Mouttaki; Unmi Kim; Rebecca Krupp; Luis Rios-Hernandez; Jessica R. Sieber; Christopher G. Struchtemeyer; Anamitra Bhattacharyya; John W. Campbell; Robert P. Gunsalus
Biochemically, the syntrophic bacteria constitute the missing link in our understanding of anaerobic flow of carbon in the biosphere. The completed genome sequence of Syntrophus aciditrophicus SB, a model fatty acid- and aromatic acid-degrading syntrophic bacterium, provides a glimpse of the composition and architecture of the electron transfer and energy-transducing systems needed to exist on marginal energy economies of a syntrophic lifestyle. The genome contains 3,179,300 base pairs and 3,169 genes where 1,618 genes were assigned putative functions. Metabolic reconstruction of the gene inventory revealed that most biosynthetic pathways of a typical Gram-negative microbe were present. A distinctive feature of syntrophic metabolism is the need for reverse electron transport; the presence of a unique Rnf-type ion-translocating electron transfer complex, menaquinone, and membrane-bound Fe-S proteins with associated heterodisulfide reductase domains suggests mechanisms to accomplish this task. Previously undescribed approaches to degrade fatty and aromatic acids, including multiple AMP-forming CoA ligases and acyl-CoA synthetases seem to be present as ways to form and dissipate ion gradients by using a sodium-based energy strategy. Thus, S. aciditrophicus, although nutritionally self-sufficient, seems to be a syntrophic specialist with limited fermentative and respiratory metabolism. Genomic analysis confirms the S. aciditrophicus metabolic and regulatory commitment to a nonconventional mode of life compared with our prevailing understanding of microbiology.
Environmental Microbiology | 2010
Jessica R. Sieber; David Sims; Cliff Han; Edwin Kim; Athanasios Lykidis; Alla Lapidus; Erin McDonnald; Lars Rohlin; David E. Culley; Robert P. Gunsalus; Michael J. McInerney
Syntrophomonas wolfei is a specialist, evolutionarily adapted for syntrophic growth with methanogens and other hydrogen- and/or formate-using microorganisms. This slow-growing anaerobe has three putative ribosome RNA operons, each of which has 16S rRNA and 23S rRNA genes of different length and multiple 5S rRNA genes. The genome also contains 10 RNA-directed, DNA polymerase genes. Genomic analysis shows that S. wolfei relies solely on the reduction of protons, bicarbonate or unsaturated fatty acids to re-oxidize reduced cofactors. Syntrophomonas wolfei lacks the genes needed for aerobic or anaerobic respiration and has an exceptionally limited ability to create ion gradients. An ATP synthase and a pyrophosphatase were the only systems detected capable of creating an ion gradient. Multiple homologues for β-oxidation genes were present even though S. wolfei uses a limited range of fatty acids from four to eight carbons in length.Syntrophomonas wolfei, other syntrophic metabolizers with completed genomic sequences, and thermophilic anaerobes known to produce high molar ratios of hydrogen from glucose have genes to produce H(2) from NADH by an electron bifurcation mechanism. Comparative genomic analysis also suggests that formate production from NADH may involve electron bifurcation. A membrane-bound, iron-sulfur oxidoreductase found in S. wolfei and Syntrophus aciditrophicus may be uniquely involved in reverse electron transport during syntrophic fatty acid metabolism. The genome sequence of S. wolfei reveals several core reactions that may be characteristic of syntrophic fatty acid metabolism and illustrates how biological systems produce hydrogen from thermodynamically difficult reactions.
Current Opinion in Microbiology | 2001
Lars Rohlin; Min Kyu Oh; James C. Liao
Microbial pathway engineering has made significant progress in multiple areas. Many examples of successful pathway engineering for specialty and fine chemicals have been reported in the past two years. Novel carotenoids and polyketides have been synthesized using molecular evolution and combinatorial strategies. In addition, rational design approaches based on metabolic control have been reported to increase metabolic flux to specific products. Experimental and computational tools have been developed to aid in design, reconstruction and analysis of non-native pathways. It is expected that a hybrid of evolutionary, combinatorial and rational design approaches will yield significant advances in the near future.
Journal of Bacteriology | 2005
Lars Rohlin; Jonathan D. Trent; Kirsty Salmon; Unmi Kim; Robert P. Gunsalus; James C. Liao
The heat shock response of the hyperthermophilic archaeon Archaeoglobus fulgidus strain VC-16 was studied using whole-genome microarrays. On the basis of the resulting expression profiles, approximately 350 of the 2,410 open reading frames (ORFs) (ca. 14%) exhibited increased or decreased transcript abundance. These span a range of cell functions, including energy production, amino acid metabolism, and signal transduction, where the majority are uncharacterized. One ORF called AF1298 was identified that contains a putative helix-turn-helix DNA binding motif. The gene product, HSR1, was expressed and purified from Escherichia coli and was used to characterize specific DNA recognition regions upstream of two A. fulgidus genes, AF1298 and AF1971. The results indicate that AF1298 is autoregulated and is part of an operon with two downstream genes that encode a small heat shock protein, Hsp20, and cdc48, an AAA+ ATPase. The DNase I footprints using HSR1 suggest the presence of a cis-binding motif upstream of AF1298 consisting of CTAAC-N5-GTTAG. Since AF1298 is negatively regulated in response to heat shock and encodes a protein only distantly related to the N-terminal DNA binding domain of Phr of Pyrococcus furiosus, these results suggest that HSR1 and Phr may belong to an evolutionarily diverse protein family involved in heat shock regulation in hyperthermophilic and mesophilic Archaea organisms.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Mark A. Arbing; Sum Chan; Annie Shin; Tung Phan; Christine J. Ahn; Lars Rohlin; Robert P. Gunsalus
Archaea have a self-assembling proteinaceous surface (S-) layer as the primary and outermost boundary of their cell envelopes. The S-layer maintains structural rigidity, protects the organism from adverse environmental elements, and yet provides access to all essential nutrients. We have determined the crystal structure of one of the two “homologous” tandem polypeptide repeats that comprise the Methanosarcina acetivorans S-layer protein and propose a high-resolution model for a microbial S-layer. The molecular features of our hexameric S-layer model recapitulate those visualized by medium resolution electron microscopy studies of microbial S-layers and greatly expand our molecular view of S-layer dimensions, porosity, and symmetry. The S-layer model reveals a negatively charged molecular sieve that presents both a charge and size barrier to restrict access to the cell periplasmic-like space. The β-sandwich folds of the S-layer protein are structurally homologous to eukaryotic virus envelope proteins, suggesting that Archaea and viruses have arrived at a common solution for protective envelope structures. These results provide insight into the evolutionary origins of primitive cell envelope structures, of which the S-layer is considered to be among the most primitive: it also provides a platform for the development of self-assembling nanomaterials with diverse functional and structural properties.
Frontiers in Microbiology | 2015
Jessica R. Sieber; Bryan R. Crable; Cody S. Sheik; Gregory B. Hurst; Lars Rohlin; Robert P. Gunsalus; Michael J. McInerney
Microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomics approach was used to quantify the protein landscape of the model syntrophic metabolizer, Syntrophomonas wolfei, grown axenically and syntrophically with Methanospirillum hungatei. Remarkably, the abundance of most proteins as represented by normalized spectral abundance factor (NSAF) value changed very little between the pure and coculture growth conditions. Among the most abundant proteins detected were GroEL and GroES chaperonins, a small heat shock protein, and proteins involved in electron transfer, beta-oxidation, and ATP synthesis. Several putative energy conservation enzyme systems that utilize NADH and ferredoxin were present. The abundance of an EtfAB2 and the membrane-bound iron-sulfur oxidoreductase (Swol_0698 gene product) delineated a potential conduit for electron transfer between acyl-CoA dehydrogenases and membrane redox carriers. Proteins detected only when S. wolfei was grown with M. hungatei included a zinc-dependent dehydrogenase with a GroES domain, whose gene is present in genomes in many organisms capable of syntrophy, and transcriptional regulators responsive to environmental stimuli or the physiological status of the cell. The proteomic analysis revealed an emphasis on macromolecular stability and energy metabolism by S. wolfei and presence of regulatory mechanisms responsive to external stimuli and cellular physiological status.
Standards in Genomic Sciences | 2012
Caroline M. Plugge; Anne M. Henstra; Petra Worm; Daan C. Swarts; Astrid H. Paulitsch-Fuchs; Johannes C. M. Scholten; Athanasios Lykidis; Alla Lapidus; Eugene Goltsman; Edwin Kim; Erin McDonald; Lars Rohlin; Bryan R. Crable; Robert P. Gunsalus; Alfons J. M. Stams; Michael J. McInerney
Syntrophobacter fumaroxidans strain MPOBT is the best-studied species of the genus Syntrophobacter. The species is of interest because of its anaerobic syntrophic lifestyle, its involvement in the conversion of propionate to acetate, H2 and CO2 during the overall degradation of organic matter, and its release of products that serve as substrates for other microorganisms. The strain is able to ferment fumarate in pure culture to CO2 and succinate, and is also able to grow as a sulfate reducer with propionate as an electron donor. This is the first complete genome sequence of a member of the genus Syntrophobacter and a member genus in the family Syntrophobacteraceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,990,251 bp long genome with its 4,098 protein-coding and 81 RNA genes is a part of the Microbial Genome Program (MGP) and the Genomes to Life (GTL) Program project.
Omics A Journal of Integrative Biology | 2003
Daniel R. Hyduke; Lars Rohlin; Katy C. Kao; James C. Liao
DNA microarray data are affected by variations from a number of sources. Before these data can be used to infer biological information, the extent of these variations must be assessed. Here we describe an open source software package, lcDNA, that provides tools for filtering, normalizing, and assessing the statistical significance of cDNA microarray data. The program employs a hierarchical Bayesian model and Markov Chain Monte Carlo simulation to estimate gene-specific confidence intervals for each gene in a cDNA microarray data set. This program is designed to perform these primary analytical operations on data from two-channel spotted, or in situ synthesized, DNA microarrays.