Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Verschuren is active.

Publication


Featured researches published by Lars Verschuren.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

Mouse Models for Atherosclerosis and Pharmaceutical Modifiers

Susanne Zadelaar; Robert Kleemann; Lars Verschuren; Jitske de Vries-van der Weij; José W.A. van der Hoorn; Teake Kooistra

Atherosclerosis is a multifactorial highly-complex disease with numerous etiologies that work synergistically to promote lesion development. The ability to develop preventive and ameliorative treatments will depend on animal models that mimic the human subject metabolically and pathophysiologically and will develop lesions comparable to those in humans. The mouse is the most useful, economic, and valid model for studying atherosclerosis and exploring effective therapeutic approaches. Among the most widely used mouse models for atherosclerosis are apolipoprotein E-deficient (ApoE-/-) and LDL receptor-deficient (LDLr-/-) mice. An up-and-coming model is the ApoE*3Leiden (E3L) transgenic mouse. Here, we review studies that have explored how and to what extent these mice respond to compounds directed at treatment of the risk factors hypercholesterolemia, hypertriglyceridemia, hypertension, and inflammation. An important outcome of this survey is that the different models used may differ markedly from one another in their response to a specific experimental manipulation. The choice of a model is therefore of critical importance and should take into account the risk factor to be studied and the working spectrum of the compounds tested.


Genome Biology | 2007

Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: a combined transcriptomics and metabolomics analysis

Robert Kleemann; Lars Verschuren; Marjan van Erk; Yuri Nikolsky; Nicole Hp Cnubben; Elwin Verheij; Age K. Smilde; Henk F. J. Hendriks; Susanne Zadelaar; Graham J. Smith; Valery Kaznacheev; Tatiana Nikolskaya; Anton Melnikov; Eva Hurt-Camejo; Jan van der Greef; Ben van Ommen; Teake Kooistra

BackgroundIncreased dietary cholesterol intake is associated with atherosclerosis. Atherosclerosis development requires a lipid and an inflammatory component. It is unclear where and how the inflammatory component develops. To assess the role of the liver in the evolution of inflammation, we treated ApoE*3Leiden mice with cholesterol-free (Con), low (LC; 0.25%) and high (HC; 1%) cholesterol diets, scored early atherosclerosis and profiled the (patho)physiological state of the liver using novel whole-genome and metabolome technologies.ResultsWhereas the Con diet did not induce early atherosclerosis, the LC diet did so but only mildly, and the HC diet induced it very strongly. With increasing dietary cholesterol intake, the liver switches from a resilient, adaptive state to an inflammatory, pro-atherosclerotic state. The liver absorbs moderate cholesterol stress (LC) mainly by adjusting metabolic and transport processes. This hepatic resilience is predominantly controlled by SREBP-1/-2, SP-1, RXR and PPARα. A further increase of dietary cholesterol stress (HC) additionally induces pro-inflammatory gene expression, including pro-atherosclerotic candidate genes. These HC-evoked changes occur via specific pro-inflammatory pathways involving specific transcriptional master regulators, some of which are established, others newly identified. Notably, several of these regulators control both lipid metabolism and inflammation, and thereby link the two processes.ConclusionWith increasing dietary cholesterol intake the liver switches from a mainly resilient (LC) to a predominantly inflammatory (HC) state, which is associated with early lesion formation. Newly developed, functional systems biology tools allowed the identification of novel regulatory pathways and transcriptional regulators controlling both lipid metabolism and inflammatory responses, thereby providing a rationale for an interrelationship between the two processes.


Atherosclerosis | 2011

Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models

Robert Kleemann; Lars Verschuren; Martine C. Morrison; Susanne Zadelaar; Marjan van Erk; Peter Y. Wielinga; Teake Kooistra

OBJECTIVE Polyphenols such as quercetin may exert several beneficial effects, including those resulting from anti-inflammatory activities, but their impact on cardiovascular health is debated. We investigated the effect of quercetin on cardiovascular risk markers including human C-reactive protein (CRP) and on atherosclerosis using transgenic humanized models of cardiovascular disease. METHODS After evaluating its anti-oxidative and anti-inflammatory effects in cultured human cells, quercetin (0.1%, w/w in diet) was given to human CRP transgenic mice, a humanized inflammation model, and ApoE*3Leiden transgenic mice, a humanized atherosclerosis model. Sodium salicylate was used as an anti-inflammatory reference. RESULTS In cultured human endothelial cells, quercetin protected against H(2)O(2)-induced lipid peroxidation and reduced the cytokine-induced cell-surface expression of VCAM-1 and E-selectin. Quercetin also reduced the transcriptional activity of NFκB in human hepatocytes. In human CRP transgenic mice (quercetin plasma concentration: 12.9 ± 1.3 μM), quercetin quenched IL1β-induced CRP expression, as did sodium salicylate. In ApoE*3Leiden mice, quercetin (plasma concentration: 19.3 ± 8.3 μM) significantly attenuated atherosclerosis by 40% (sodium salicylate by 86%). Quercetin did not affect atherogenic plasma lipids or lipoproteins but it significantly lowered the circulating inflammatory risk factors SAA and fibrinogen. Combined histological and microarray analysis of aortas revealed that quercetin affected vascular cell proliferation thereby reducing atherosclerotic lesion growth. Quercetin also reduced the gene expression of specific factors implicated in local vascular inflammation including IL-1R, Ccl8, IKK, and STAT3. CONCLUSION Quercetin reduces the expression of human CRP and cardiovascular risk factors (SAA, fibrinogen) in mice in vivo. These systemic effects together with local anti-proliferative and anti-inflammatory effects in the aorta may contribute to the attenuation of atherosclerosis.


PLOS ONE | 2010

Time-Resolved and Tissue-Specific Systems Analysis of the Pathogenesis of Insulin Resistance

Robert Kleemann; Marjan van Erk; Lars Verschuren; Anita M. van den Hoek; Maud Koek; Peter Y. Wielinga; Annie Jie; Linette Pellis; Ivana Bobeldijk-Pastorova; Thomas Kelder; Karin Toet; Suzan Wopereis; Nicole Hp Cnubben; Chris T. Evelo; Ben van Ommen; Teake Kooistra

Background The sequence of events leading to the development of insulin resistance (IR) as well as the underlying pathophysiological mechanisms are incompletely understood. As reductionist approaches have been largely unsuccessful in providing an understanding of the pathogenesis of IR, there is a need for an integrative, time-resolved approach to elucidate the development of the disease. Methodology/Principal Findings Male ApoE3Leiden transgenic mice exhibiting a humanized lipid metabolism were fed a high-fat diet (HFD) for 0, 1, 6, 9, or 12 weeks. Development of IR was monitored in individual mice over time by performing glucose tolerance tests and measuring specific biomarkers in plasma, and hyperinsulinemic-euglycemic clamp analysis to assess IR in a tissue-specific manner. To elucidate the dynamics and tissue-specificity of metabolic and inflammatory processes key to IR development, a time-resolved systems analysis of gene expression and metabolite levels in liver, white adipose tissue (WAT), and muscle was performed. During HFD feeding, the mice became increasingly obese and showed a gradual increase in glucose intolerance. IR became first manifest in liver (week 6) and then in WAT (week 12), while skeletal muscle remained insulin-sensitive. Microarray analysis showed rapid upregulation of carbohydrate (only liver) and lipid metabolism genes (liver, WAT). Metabolomics revealed significant changes in the ratio of saturated to polyunsaturated fatty acids (liver, WAT, plasma) and in the concentrations of glucose, gluconeogenesis and Krebs cycle metabolites, and branched amino acids (liver). HFD evoked an early hepatic inflammatory response which then gradually declined to near baseline. By contrast, inflammation in WAT increased over time, reaching highest values in week 12. In skeletal muscle, carbohydrate metabolism, lipid metabolism, and inflammation was gradually suppressed with HFD. Conclusions/Significance HFD-induced IR is a time- and tissue-dependent process that starts in liver and proceeds in WAT. IR development is paralleled by tissue-specific gene expression changes, metabolic adjustments, changes in lipid composition, and inflammatory responses in liver and WAT involving p65-NFkB and SOCS3. The alterations in skeletal muscle are largely opposite to those in liver and WAT.


Circulation Research | 2009

MIF Deficiency Reduces Chronic Inflammation in White Adipose Tissue and Impairs the Development of Insulin Resistance, Glucose Intolerance, and Associated Atherosclerotic Disease

Lars Verschuren; Teake Kooistra; Jürgen Bernhagen; Peter J. Voshol; D. Margriet Ouwens; Marjan van Erk; Jitske de Vries-van der Weij; Lin Leng; J. Hajo van Bockel; Ko Willems van Dijk; Günter Fingerle-Rowson; Richard Bucala; Robert Kleemann

Chronic inflammation in white adipose tissue (WAT) is positively associated with obesity, insulin resistance (IR) and the development of type 2 diabetes. The proinflammatory cytokine MIF (macrophage migration inhibitory factor) is an essential, upstream component of the inflammatory cascade. This study examines whether MIF is required for the development of obesity, IR, glucose intolerance, and atherosclerosis in the LDL receptor–deficient (Ldlr−/−) mouse model of disease. Ldlr−/− mice develop IR and glucose intolerance within 15 weeks, whereas Mif−/−Ldlr−/− littermates are protected. MIF deficiency does not affect obesity and lipid risk factors but specifically reduces inflammation in WAT and liver, as reflected by lower plasma serum amyloid A and fibrinogen levels at baseline and under inflammatory conditions. Conversely, MIF stimulates the in vivo expression of human C-reactive protein, an inflammation marker and risk factor of IR and cardiovascular disease. In WAT, MIF deficiency reduces nuclear c-Jun levels and improves insulin sensitivity; MIF deficiency also reduces macrophage accumulation in WAT and blunts the expression of two proteins that regulate macrophage infiltration (intercellular adhesion molecule-1, CD44). Mechanistic parallels to WAT were observed in aorta, where the absence of MIF reduces monocyte adhesion, macrophage lesion content, and atherosclerotic lesion size. These data highlight the physiological importance of chronic inflammation in development of IR and atherosclerosis and suggest that MIF is a potential therapeutic target for reducing the inflammatory component of metabolic and cardiovascular disorders.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

Effect of Low Dose Atorvastatin Versus Diet-Induced Cholesterol Lowering on Atherosclerotic Lesion Progression and Inflammation in Apolipoprotein E*3–Leiden Transgenic Mice

Lars Verschuren; Robert Kleemann; Erik H. Offerman; Alexander J. Szalai; Sjef J. Emeis; Teake Kooistra

Objective— To evaluate whether low-dose atorvastatin suppresses atherosclerotic lesion progression and inflammation in apolipoprotein E*3 (apoE*3)–Leiden mice beyond its cholesterol-lowering effect. Methods and Results— ApoE*3–Leiden mice were fed a high-cholesterol (HC) diet until mild atherosclerotic lesions had formed. Subsequently, HC diet feeding was continued or mice received HC supplemented with 0.002% (w/w) atorvastatin (HC+A), resulting in 19% plasma cholesterol lowering, or mice received a low-cholesterol (LC) diet to establish a plasma cholesterol level similar to that achieved in the HC+A group. HC+A and LC diet reduced, significantly and to the same extent, lesion progression and complication in the aortic root, as assessed by measuring total atherosclerotic lesion area, lesion severity, and macrophage and smooth muscle cell area. In the aortic arch, HC+A but not LC blocked lesion progression. HC+A and LC reduced vascular inflammation (ie, expression of macrophage migration inhibitory factor, plasminogen activator inhibitor- 1, matrix metalloproteinase-9), but HC+A additionally suppressed vascular cell adhesion molecule-1 expression and, in parallel, monocyte adhesion. In contrast, low-dose atorvastatin showed no antiinflammatory action toward hepatic inflammation markers (serum amyloid A, C-reactive protein [CRP]) in apoE*3–Leiden mice and human CRP transgenic mice. Conclusion— Low-dose atorvastatin cholesterol-dependently reduces lesion progression in the aortic root but shows antiinflammatory vascular activity and tends to retard atherogenesis in the aortic arch beyond its cholesterol-lowering effect.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Fenofibrate Reduces Atherogenesis in ApoE*3Leiden Mice: Evidence for Multiple Antiatherogenic Effects Besides Lowering Plasma Cholesterol

Teake Kooistra; Lars Verschuren; J. de Vries-van der Weij; W. Koenig; Karin Toet; Robert Kleemann

Objective—To demonstrate, quantify, and mechanistically dissect antiatherosclerotic effects of fenofibrate besides lowering plasma cholesterol per se. Methods and Results—ApoE*3Leiden transgenic mice received either a high-cholesterol diet (HC) or HC containing fenofibrate (HC+FF) resulting in 52% plasma cholesterol-lowering. In a separate low-cholesterol diet (LC) control group, plasma cholesterol was adjusted to the level achieved in the HC+FF group. Low plasma cholesterol alone (assessed in LC) resulted in reduced atherosclerosis (lesion area, number and severity) and moderately decreased plasma serum amyloid-A (SAA) concentrations. Compared with LC, fenofibrate additively reduced lesion area, number and severity, and the total aortic plaque load. This additional effect in HC+FF was paralleled by an extra reduction of aortic inflammation (macrophage content; monocyte adhesion; intercellular adhesion molecule-1 [ICAM-1], soluble vascular cell adhesion molecule-1, granulocyte-macrophage colony-stimulating factor (GM-CSF), MCP-1, and NF-&kgr;B expression), systemic inflammation (plasma SAA and fibrinogen levels), and by an upregulation of plasma apoE levels. Also, enhanced expression of ABC-A1 and SR-B1 in aortic macrophages may contribute to the antiatherosclerotic effect of fenofibrate by promoting cholesterol efflux. Conclusion—Fenofibrate reduces atherosclerosis more than can be explained by lowering total plasma cholesterol per se. Impaired recruitment of monocytes/macrophages, reduced vascular and systemic inflammation, and stimulation of cholesterol efflux may all contribute to these beneficial effect of fenofibrate.


Journal of Nutrition | 2011

A Dietary Mixture Containing Fish Oil, Resveratrol, Lycopene, Catechins, and Vitamins E and C Reduces Atherosclerosis in Transgenic Mice

Lars Verschuren; Peter Y. Wielinga; Wim van Duyvenvoorde; Samira Tijani; Karin Toet; Ben van Ommen; Teake Kooistra; Robert Kleemann

Chronic inflammation and proatherogenic lipids are important risk factors of cardiovascular disease (CVD). Specific dietary constituents such as polyphenols and fish oils may improve cardiovascular risk factors and may have a beneficial effect on disease outcomes. We hypothesized that the intake of an antiinflammatory dietary mixture (AIDM) containing resveratrol, lycopene, catechin, vitamins E and C, and fish oil would reduce inflammatory risk factors, proatherogenic lipids, and endpoint atherosclerosis. AIDM was evaluated in an inflammation model, male human C-reactive protein (CRP) transgenic mice, and an atherosclerosis model, female ApoE*3Leiden transgenic mice. Two groups of male human-CRP transgenic mice were fed AIDM [0.567% (wt:wt) powder and 0.933% (wt:wt oil)] or placebo for 6 wk. The effects of AIDM on basal and IL-1β–stimulated CRP expression were investigated. AIDM reduced cytokine-induced human CRP and fibrinogen expression in human-CRP transgenic mice. In the atherosclerosis study, 2 groups of female ApoE*3Leiden transgenic mice were fed an atherogenic diet supplemented with AIDM [0.567% (wt:wt) powder and 0.933% (wt:wt oil)] or placebo for 16 wk. AIDM strongly reduced plasma cholesterol, TG, and serum amyloid A concentrations compared with placebo. Importantly, long-term treatment of ApoE*3Leiden mice with AIDM markedly reduced the development of atherosclerosis by 96% compared with placebo. The effect on atherosclerosis was paralleled by a reduced expression of the vascular inflammation markers and adhesion molecules inter-cellular adhesion molecule-1 and E-selectin. Dietary supplementation of AIDM improves lipid and inflammatory risk factors of CVD and strongly reduces atherosclerotic lesion development in female transgenic mice.


Atherosclerosis | 2014

Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFκB in vivo

Martine C. Morrison; van der Roel Heijden; Peter Heeringa; Eric Kaijzel; Lars Verschuren; Rune Blomhoff; Teake Kooistra; Robert Kleemann

OBJECTIVE Previous studies investigating flavanol-rich foods provide indications for potential cardioprotective effects of these foods, but the effects of individual flavanols remain unclear. We investigated whether the flavanol epicatechin can reduce diet-induced atherosclerosis, with particular emphasis on the cardiovascular risk factors dyslipidaemia and inflammation. METHODS ApoE*3-Leiden mice were fed a cholesterol-containing atherogenic diet with or without epicatechin (0.1% w/w) to study effects on early- and late-stage atherosclerosis (8 w and 20 w). In vivo effects of epicatechin on diet-induced inflammation were studied in human-CRP transgenic mice and NFκB-luciferase reporter mice. RESULTS Epicatechin attenuated atherosclerotic lesion area in ApoE*3-Leiden mice by 27%, without affecting plasma lipids. This anti-atherogenic effect of epicatechin was specific to the severe lesion types, with no effect on mild lesions. Epicatechin mitigated diet-induced increases in plasma SAA (in ApoE*3-Leiden mice) and plasma human-CRP (in human-CRP transgenic mice). Microarray analysis of aortic gene expression revealed an attenuating effect of epicatechin on several diet-induced pro-atherogenic inflammatory processes in the aorta (e.g. chemotaxis of cells, matrix remodelling), regulated by NFκB. These findings were confirmed immunohistochemically by reduced lesional neutrophil content in HCE, and by inhibition of diet-induced NFκB activity in epicatechin-treated NFκB-luciferase reporter mice. CONCLUSION Epicatechin attenuates development of atherosclerosis and impairs lesion progression from mild to severe lesions in absence of an effect on dyslipidaemia. The observed reduction of circulating inflammatory risk factors by epicatechin (e.g. SAA, human-CRP), as well as its local anti-inflammatory activity in the vessel wall, provide a rationale for epicatechins anti-atherogenic effects.


Journal of Lipid Research | 2015

Anacetrapib reduces (V)LDL cholesterol by inhibition of CETP activity and reduction of plasma PCSK9

Sam J. L. van der Tuin; Susan Kühnast; Jimmy F.P. Berbée; Lars Verschuren; Elsbet J. Pieterman; Louis M. Havekes; José W.A. van der Hoorn; Patrick C. N. Rensen; J. Wouter Jukema; Ko Willems van Dijk; Yanan Wang

Recently, we showed in APOE*3-Leiden cholesteryl ester transfer protein (E3L.CETP) mice that anacetrapib attenuated atherosclerosis development by reducing (V)LDL cholesterol [(V)LDL-C] rather than by raising HDL cholesterol. Here, we investigated the mechanism by which anacetrapib reduces (V)LDL-C and whether this effect was dependent on the inhibition of CETP. E3L.CETP mice were fed a Western-type diet alone or supplemented with anacetrapib (30 mg/kg body weight per day). Microarray analyses of livers revealed downregulation of the cholesterol biosynthesis pathway (P < 0.001) and predicted downregulation of pathways controlled by sterol regulatory element-binding proteins 1 and 2 (z-scores −2.56 and −2.90, respectively; both P < 0.001). These data suggest increased supply of cholesterol to the liver. We found that hepatic proprotein convertase subtilisin/kexin type 9 (Pcsk9) expression was decreased (−28%, P < 0.01), accompanied by decreased plasma PCSK9 levels (−47%, P < 0.001) and increased hepatic LDL receptor (LDLr) content (+64%, P < 0.01). Consistent with this, anacetrapib increased the clearance and hepatic uptake (+25%, P < 0.001) of [14C]cholesteryl oleate-labeled VLDL-mimicking particles. In E3L mice that do not express CETP, anacetrapib still decreased (V)LDL-C and plasma PCSK9 levels, indicating that these effects were independent of CETP inhibition. We conclude that anacetrapib reduces (V)LDL-C by two mechanisms: 1) inhibition of CETP activity, resulting in remodeled VLDL particles that are more susceptible to hepatic uptake; and 2) a CETP-independent reduction of plasma PCSK9 levels that has the potential to increase LDLr-mediated hepatic remnant clearance.

Collaboration


Dive into the Lars Verschuren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan H.N. Lindeman

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

José W.A. van der Hoorn

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain J. van Gool

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Hajo van Bockel

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge