Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars von Oerthel is active.

Publication


Featured researches published by Lars von Oerthel.


Development | 2009

Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression

Frank M. J. Jacobs; Susan van Erp; Annemarie J. A. van der Linden; Lars von Oerthel; J. Peter H. Burbach; Marten P. Smidt

In recent years, the meso-diencephalic dopaminergic (mdDA) neurons have been extensively studied for their association with Parkinsons disease. Thus far, specification of the dopaminergic phenotype of mdDA neurons is largely attributed to the orphan nuclear receptor Nurr1. In this study, we provide evidence for extensive interplay between Nurr1 and the homeobox transcription factor Pitx3 in vivo. Both Nurr1 and Pitx3 interact with the co-repressor PSF and occupy the promoters of Nurr1 target genes in concert. Moreover, in vivo expression analysis reveals that Nurr1 alone is not sufficient to drive the dopaminergic phenotype in mdDA neurons but requires Pitx3 for full activation of target gene expression. In the absence of Pitx3, Nurr1 is kept in a repressed state through interaction with the co-repressor SMRT. Highly resembling the effect of ligand activation of nuclear receptors, recruitment of Pitx3 modulates the Nurr1 transcriptional complex by decreasing the interaction with SMRT, which acts through HDACs to keep promoters in a repressed deacetylated state. Indeed, interference with HDAC-mediated repression in Pitx3-/- embryos efficiently reactivates the expression of Nurr1 target genes, bypassing the necessity for Pitx3. These data position Pitx3 as an essential potentiator of Nurr1 in specifying the dopaminergic phenotype, providing novel insights into mechanisms underlying development of mdDA neurons in vivo, and the programming of stem cells as a future cell replacement therapy for Parkinsons disease.


Development | 2007

Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency.

Frank M. J. Jacobs; Simone M. Smits; Cornelle W. Noorlander; Lars von Oerthel; Annemarie J. A. van der Linden; J. Peter H. Burbach; Marten P. Smidt

Selective neuronal loss in the substantia nigra (SNc), as described for Parkinsons disease (PD) in humans and for Pitx3 deficiency in mice, highlights the existence of neuronal subpopulations. As yet unknown subset-specific gene cascades might underlie the observed differences in neuronal vulnerability. We identified a developmental cascade in mice in which Ahd2 (Aldh1a1) is under the transcriptional control of Pitx3. Interestingly, Ahd2 distribution is restricted to a subpopulation of the meso-diencephalic dopaminergic (mdDA) neurons that is affected by Pitx3 deficiency. Ahd2 is involved in the synthesis of retinoic acid (RA), which has a crucial role in neuronal patterning, differentiation and survival in the brain. Most intriguingly, restoring RA signaling in the embryonic mdDA area counteracts the developmental defects caused by Pitx3 deficiency. The number of tyrosine hydroxylase-positive (TH+) neurons was significantly increased after RA treatment in the rostral mdDA region of Pitx3-/- embryos. This effect was specific for the rostral part of the developing mdDA area, and was observed exclusively in Pitx3-/- embryos. The effect of RA treatment during the critical phase was preserved until later in development, and our data suggest that RA is required for the establishment of proper mdDA neuronal identity. This positions Pitx3 centrally in a mdDA developmental cascade linked to RA signaling. Here, we propose a novel mechanism in which RA is involved in mdDA neuronal development and maintenance, providing new insights into subset-specific vulnerability in PD.


Development | 2009

Identification of Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons.

Frank M. J. Jacobs; Annemarie J. A. van der Linden; Yuhui Wang; Lars von Oerthel; Hei Sook Sul; J. Peter H. Burbach; Marten P. Smidt

The orphan nuclear receptor Nurr1 is essential for the development of meso-diencephalic dopamine (mdDA) neurons and is required, together with the homeobox transcription factor Pitx3, for the expression of genes involved in dopamine metabolism. In order to elucidate the molecular mechanisms that underlie the neuronal deficits in Nurr1-/- mice, we performed combined gene expression microarrays and ChIP-on-chip analysis and thereby identified Dlk1, Ptpru and Klhl1 as novel Nurr1 target genes in vivo. In line with the previously described cooperativity between Nurr1 and Pitx3, we show that the expression of Ptpru and Klhl1 in mdDA neurons is also dependent on Pitx3. Furthermore, we demonstrate that Nurr1 interacts with the Ptpru promoter directly and requires Pitx3 for full expression of Ptpru in mdDA neurons. By contrast, the expression of Dlk1 is maintained in Pitx3-/- embryos and is even expanded into the rostral part of the mdDA area, suggesting a unique position of Dlk1 in the Nurr1 and Pitx3 transcriptional cascades. Expression analysis in Dlk1-/- embryos reveals that Dlk1 is required to prevent premature expression of Dat in mdDA neuronal precursors as part of the multifaceted process of mdDA neuronal differentiation driven by Nurr1 and Pitx3. Taken together, the involvement of Nurr1 and Pitx3 in the expression of novel target genes involved in important neuronal processes such as neuronal patterning, axon outgrowth and terminal differentiation, opens up new avenues to study the properties of mdDA neurons during development and in neuronal pathology as observed in Parkinsons disease.


Development | 2013

Specification of dopaminergic subsets involves interplay of En1 and Pitx3

Jesse V. Veenvliet; Maria Tm Alves dos Santos; Willemieke M. Kouwenhoven; Lars von Oerthel; Jamie L. Lim; Annemarie J. A. van der Linden; Marian J. A. Groot Koerkamp; Frank C. P. Holstege; Marten P. Smidt

Mesodiencephalic dopaminergic (mdDA) neurons control locomotion and emotion and are affected in multiple psychiatric and neurodegenerative diseases, including Parkinson’s disease (PD). The homeodomain transcription factor Pitx3 is pivotal in mdDA neuron development and loss of Pitx3 results in programming deficits in a rostrolateral subpopulation of mdDA neurons destined to form the substantia nigra pars compacta (SNc), reminiscent of the specific cell loss observed in PD. We show here that in adult mice in which the gene encoding a second homeoprotein, engrailed 1 (En1), has been deleted, dramatic loss of mdDA neurons and striatal innervation defects were observed, partially reminiscent of defects observed in Pitx3-/- mice. We then continue to reveal developmental crosstalk between En1 and Pitx3 through genome-wide expression analysis. During development, both En1 and Pitx3 are required to induce expression of mdDA genes in the rostrolateral subset destined to form the SNc. By contrast, Pitx3 and En1 reciprocally regulate a separate gene cluster, which includes Cck, demarcating a caudal mdDA subset in wild-type embryos. Whereas En1 is crucial for induction of this caudal phenotype, Pitx3 antagonizes it rostrolaterally. The combinatorial action of En1 and Pitx3 is potentially realized through at least three levels of molecular interaction: (1) influencing each other’s expression level, (2) releasing histone deacetylase-mediated repression of Nurr1 target genes and (3) modulating En1 activity through Pitx3-driven activation of En1 modulatory proteins. These findings show how two crucial mediators of mdDA neuronal development, En1 and Pitx3, interact in dopaminergic subset specification, the importance of which is exemplified by the specific vulnerability of the SNc found in PD.


Development | 2011

Retinoic acid-dependent and -independent gene-regulatory pathways of Pitx3 in meso-diencephalic dopaminergic neurons

Frank M. J. Jacobs; Jesse V. Veenvliet; Wadia H. Almirza; Elisa J. Hoekstra; Lars von Oerthel; Annemarie J. A. van der Linden; Roel Neijts; Marian J. A. Groot Koerkamp; Dik van Leenen; Frank C. P. Holstege; J. Peter H. Burbach; Marten P. Smidt

Development of meso-diencephalic dopamine (mdDA) neurons requires the combined actions of the orphan nuclear receptor Nurr1 and the paired-like homeobox transcription factor Pitx3. Whereas all mdDA neurons require Nurr1 for expression of Th and survival, dependence on Pitx3 is displayed only by the mdDA subpopulation that will form the substantia nigra (SNc). Previously, we have demonstrated that Pitx3–/– embryos lack the expression of the retinoic acid (RA)-generating enzyme Ahd2, which is normally selectively expressed in the Pitx3-dependent DA neurons of the SNc. Restoring RA signaling in Pitx3–/– embryos revealed a selective dependence of SNc neurons on the presence of RA for differentiation into Th-positive neurons and maintenance throughout embryonic development. Whereas these data are suggestive of an important developmental role for RA in neurons of the SNc, it remained unclear whether other Nurr1 and Pitx3 target genes depend on RA signaling in a manner similar to Th. In the search for genes that were affected in Pitx3-deficient mdDA neurons and restored upon embryonic RA treatment, we provide evidence that Delta-like 1, D2R (Drd2) and Th are regulated by Pitx3 and RA signaling, which influences the mdDA terminal differentiated phenotype. Furthermore, we show that regulation of Ahd2-mediated RA signaling represents only one aspect of the Pitx3 downstream cascade, as Vmat2, Dat, Ahd2 (Aldh1a1), En1, En2 and Cck were unaffected by RA treatment and are (subset) specifically modulated by Pitx3. In conclusion, our data reveal several RA-dependent and -independent aspects of the Pitx3-regulated gene cascade, suggesting that Pitx3 acts on multiple levels in the molecular subset-specification of mdDA neurons.


Biology Open | 2012

Genome wide expression profiling of the mesodiencephalic region identifies novel factors involved in early and late dopaminergic development.

Koushik Chakrabarty; Lars von Oerthel; Anita J. C. G. M. Hellemons; Frédéric Clotman; Agnès Espana; Marian J. A. Groot Koerkamp; Frank C. P. Holstege; R. Jeroen Pasterkamp; Marten P. Smidt

Summary Meso-diencephalic dopaminergic (mdDA) neurons are critical for motor control and cognitive functioning and their loss or dysfunction is associated with disorders such as Parkinsons disease (PD), schizophrenia and addiction. However, relatively little is known about the molecular mechanisms underlying mdDA neuron development and maintenance. Here, we determined the spatiotemporal map of genes involved in the development of mdDA neurons to gain further insight into their molecular programming. Genome-wide gene expression profiles of the developing ventral mesencephalon (VM) were compared at different developmental stages leading to the identification of novel regulatory roles of neuronal signaling through nicotinic acthylcholine receptors (Chrna6 and Chrnb3 subunits) and the identification of novel transcription factors (Oc2 and 3) involved in the generation of the mdDA neuronal field. We show here that Pitx3, in cooperation with Nurr1, is the critical component in the activation of the Chrna6 and Chrnb3 subunits in mdDA neurons. Furthermore, we provide evidence of two divergent regulatory pathways resulting in the expression of Chrna6 and Chrnb3 respectively.


PLOS ONE | 2013

Molecular Marker Differences Relate to Developmental Position and Subsets of Mesodiencephalic Dopaminergic Neurons

Simone M. Smits; Lars von Oerthel; Elisa J. Hoekstra; J. Peter H. Burbach; Marten P. Smidt

The development of mesodiencephalic dopaminergic (mdDA) neurons located in the substantia nigra compacta (SNc) and ventral tegmental area (VTA) follow a number of stages marked by distinct events. After preparation of the region by signals that provide induction and patterning, several transcription factors have been identified, which are involved in specifying the neuronal fate of these cells. The specific vulnerability of SNc neurons is thought to root in these specific developmental programs. The present study examines the positions of young postmitotic mdDA neurons to relate developmental position to mdDA subset specific markers. MdDA neurons were mapped relative to the neuromeric domains (prosomeres 1-3 (P1-3), midbrain, and hindbrain) as well as the longitudinal subdivisions (floor plate, basal plate, alar plate), as proposed by the prosomeric model. We found that postmitotic mdDA neurons are located mainly in the floorplate domain and very few in slightly more lateral domains. Moreover, mdDA neurons are present along a large proportion of the anterior/posterior axis extending from the midbrain to P3 in the diencephalon. The specific positions relate to some extent to the presence of specific subset markers as Ahd2. In the adult stage more of such subsets specific expressed genes are present and may represent a molecular map defining molecularly distinct groups of mdDA neurons.


PLOS ONE | 2013

Lmx1a Encodes a Rostral Set of Mesodiencephalic Dopaminergic Neurons Marked by the Wnt/B-Catenin Signaling Activator R-spondin 2

Elisa J. Hoekstra; Lars von Oerthel; Lars P. van der Heide; Willemieke M. Kouwenhoven; Jesse V. Veenvliet; Iris Wever; Yong-Ri Jin; Jeong Kyo Yoon; Annemarie J. A. van der Linden; Frank C. P. Holstege; Marian J. A. Groot Koerkamp; Marten P. Smidt

Recent developments in molecular programming of mesodiencephalic dopaminergic (mdDA) neurons have led to the identification of many transcription factors playing a role in mdDA specification. LIM homeodomain transcription factor Lmx1a is essential for chick mdDA development, and for the efficient differentiation of ES-cells towards a dopaminergic phenotype. In this study, we aimed towards a more detailed understanding of the subtle phenotype in Lmx1a-deficient (dreher) mice, by means of gene expression profiling. Transcriptome analysis was performed, to elucidate the exact molecular programming underlying the neuronal deficits after loss of Lmx1a. Subsequent expression analysis on brain sections, confirmed that Nurr1 is regulated by Lmx1a, and additional downstream targets were identified, like Pou4f1, Pbx1, Pitx2, C130021l20Rik, Calb2 and Rspo2. In line with a specific, rostral-lateral (prosomer 2/3) loss of expression of most of these genes during development, Nurr1 and C130021l20Rik were affected in the SNc of the mature mdDA system. Interestingly, this deficit was marked by the complete loss of the Wnt/b-catenin signaling activator Rspo2 in this domain. Subsequent analysis of Rspo2−/− embryos revealed affected mdDA neurons, partially phenocopying the Lmx1a mutant. To conclude, our study revealed that Lmx1a is essential for a rostral-lateral subset of the mdDA neuronal field, where it might serve a critical function in modulating proliferation and differentiation of mdDA progenitors through the regulation of the Wnt activator Rspo2.


Behavioural Brain Research | 2008

Phenotypic segregation of aphakia and Pitx3-null mutants reveals that Pitx3 deficiency increases consolidation of specific movement components

Martien J.H. Kas; Annemarie J. A. van der Linden; Hugo Oppelaar; Lars von Oerthel; Geert M.J. Ramakers; Marten P. Smidt

Deficiency of the meso-diencephalic dopamine (mdDA) neuron specific transcription factor Pitx3 in aphakia (ak) mice results in the loss of the substantia nigra compacta (SNc). Concomitantly, reduced spontaneous locomotor behavior, symptoms reminiscent to those in Parkinsons disease, has been reported. However, the ak mouse line originates from the 1960s and has been compared to C57BL/6J inbred controls. Therefore, to define Pitx3 gene function in baseline and novelty-induced locomotor behavior and mdDA neuronal activity, we analyzed Pitx3-deficiency in a controlled genetic and epigenetic background. The analysis implicated that, in contrast to the controversial and previously reported hypo-activity in ak mice, Pitx3-/- mice showed normal dark phase motor activity levels. Our data also revealed that ak and Pitx3-/- mice both display a similar neuro-anatomical and physiological phenotype, and, interestingly, showed increased spontaneous home cage activity levels during their habitual sleep phase. Further behavioral analysis revealed that both ak and Pitx3-/- mice have reduced transitions but increased consolidation of specific locomotor behaviors, such as rearing and horizontal movement. Thus, Pitx3 is not involved in the expression of nighttime motor activity levels, but is critical for selective mdDA neuronal activity and associated with increased consolidation of movement.


PLOS ONE | 2014

Mesodiencephalic dopaminergic neuronal differentiation does not involve GLI2A-mediated SHH-signaling and is under the direct influence of canonical WNT signaling.

Simone Mesman; Lars von Oerthel; Marten P. Smidt

Sonic Hedgehog (SHH) and WNT proteins are key regulators in many developmental processes, like embryonic patterning and brain development. In the brain, SHH is expressed in a gradient starting in the floor plate (FP) progressing ventrally in the midbrain, where it is thought to be involved in the development and specification of mesodiencephalic dopaminergic (mdDA) neurons. GLI2A-mediated SHH-signaling induces the expression of Gli1, which is inhibited when cells start expressing SHH themselves. To determine whether mdDA neurons receive GLI2A-mediated SHH-signaling during differentiation, we used a BAC-transgenic mouse model expressing eGFP under the control of the Gli1 promoter. This mouse-model allowed for mapping of GLI2A-mediated SHH-signaling temporal and spatial in the mouse midbrain. Since mdDA neurons are born from E10.5, peaking at E11.0–E12.0, we examined Gli1-eGFP embryos at E11.5, E12.5, and E13.5, indicating whether Gli1 was induced before or during mdDA development and differentiation. Our data indicate that GLI2A-mediated SHH-signaling is not involved in mdDA neuronal differentiation. However, it appears to be involved in the differentiation of neurons which make up a subset of the red nucleus (RN). In order to detect whether mdDA neuronal differentiation may be under the control of canonical WNT-signaling, we used a transgenic mouse-line expressing LacZ under the influence of stable β-catenin. Here, we show that TH+ neurons of the midbrain receive canonical WNT-signaling during differentiation. Therefore, we suggest that early SHH-signaling is indirectly involved in mdDA development through early patterning of the midbrain area, whereas canonical WNT-signaling is directly involved in the differentiation of the mdDA neuronal population.

Collaboration


Dive into the Lars von Oerthel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge