Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Wojtecki is active.

Publication


Featured researches published by Lars Wojtecki.


The New England Journal of Medicine | 2013

Neurostimulation for Parkinson's Disease with Early Motor Complications

W. M. M. Schuepbach; Jörn Rau; K. Knudsen; Jens Volkmann; Paul Krack; Lars Timmermann; Thomas D. Hälbig; Helke Hesekamp; S. M. Navarro; Niklaus Meier; D. Falk; Maximilian Mehdorn; S. Paschen; M. Maarouf; M. T. Barbe; G. R. Fink; Doreen Gruber; Gerd-Helge Schneider; Eric Seigneuret; Andrea Kistner; Patrick Chaynes; Fabienne Ory-Magne; C. Brefel Courbon; J. Vesper; Alfons Schnitzler; Lars Wojtecki; Jean-Luc Houeto; Benoît Bataille; David Maltête; Philippe Damier

BACKGROUND Subthalamic stimulation reduces motor disability and improves quality of life in patients with advanced Parkinsons disease who have severe levodopa-induced motor complications. We hypothesized that neurostimulation would be beneficial at an earlier stage of Parkinsons disease. METHODS In this 2-year trial, we randomly assigned 251 patients with Parkinsons disease and early motor complications (mean age, 52 years; mean duration of disease, 7.5 years) to undergo neurostimulation plus medical therapy or medical therapy alone. The primary end point was quality of life, as assessed with the use of the Parkinsons Disease Questionnaire (PDQ-39) summary index (with scores ranging from 0 to 100 and higher scores indicating worse function). Major secondary outcomes included parkinsonian motor disability, activities of daily living, levodopa-induced motor complications (as assessed with the use of the Unified Parkinsons Disease Rating Scale, parts III, II, and IV, respectively), and time with good mobility and no dyskinesia. RESULTS For the primary outcome of quality of life, the mean score for the neurostimulation group improved by 7.8 points, and that for the medical-therapy group worsened by 0.2 points (between-group difference in mean change from baseline to 2 years, 8.0 points; P=0.002). Neurostimulation was superior to medical therapy with respect to motor disability (P<0.001), activities of daily living (P<0.001), levodopa-induced motor complications (P<0.001), and time with good mobility and no dyskinesia (P=0.01). Serious adverse events occurred in 54.8% of the patients in the neurostimulation group and in 44.1% of those in the medical-therapy group. Serious adverse events related to surgical implantation or the neurostimulation device occurred in 17.7% of patients. An expert panel confirmed that medical therapy was consistent with practice guidelines for 96.8% of the patients in the neurostimulation group and for 94.5% of those in the medical-therapy group. CONCLUSIONS Subthalamic stimulation was superior to medical therapy in patients with Parkinsons disease and early motor complications. (Funded by the German Ministry of Research and others; EARLYSTIM ClinicalTrials.gov number, NCT00354133.).


Lancet Neurology | 2008

Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study.

Karsten Witt; Christine Daniels; Julia Reiff; Paul Krack; Jens Volkmann; M. O. Pinsker; Martin Krause; Volker M. Tronnier; Manja Kloss; Alfons Schnitzler; Lars Wojtecki; Kai Bötzel; Adrian Danek; Rüdiger Hilker; Volker Sturm; Elfriede Karner; Günther Deuschl

BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces motor symptoms in patients with Parkinsons disease (PD) and improves their quality of life; however, the effect of DBS on cognitive functions and its psychiatric side-effects are still controversial. To assess the neuropsychiatric consequences of DBS in patients with PD we did an ancillary protocol as part of a randomised study that compared DBS with the best medical treatment. METHODS 156 patients with advanced Parkinsons disease and motor fluctuations were randomly assigned to have DBS of the STN or the best medical treatment for PD according to the German Society of Neurology guidelines. 123 patients had neuropsychological and psychiatric examinations to assess the changes between baseline and after 6 months. The primary outcome was the comparison of the effect of DBS with the best medical treatment on overall cognitive functioning (Mattis dementia rating scale). Secondary outcomes were the effects on executive function, depression, anxiety, psychiatric status, manic symptoms, and quality of life. Analysis was per protocol. The study is registered at ClinicalTrials.gov, number NCT00196911. FINDINGS 60 patients were randomly assigned to receive STN-DBS and 63 patients to have best medical treatment. After 6 months, impairments were seen in executive function (difference of changes [DBS-best medical treatment] in verbal fluency [semantic] -4.50 points, 95% CI -8.07 to -0.93, Cohens d=-;0.4; verbal fluency [phonemic] -3.06 points, -5.50 to -0.62, -0.5; Stroop 2 naming colour error rate -0.37 points, -0.73 to 0.00, -0.4; Stroop 3 word reading time -5.17 s, -8.82 to -1.52, -0.5; Stroop 4 colour naming time -13.00 s, -25.12 to -0.89, -0.4), irrespective of the improvement in quality of life (difference of changes in PDQ-39 10.16 points, 5.45 to 14.87, 0.6; SF-36 physical 16.55 points, 10.89 to 22.21, 0.9; SF-36 psychological 9.74 points, 2.18 to 17.29, 0.5). Anxiety was reduced in the DBS group compared with the medication group (difference of changes in Beck anxiety inventory 10.43 points, 6.08 to 14.78, 0.8). Ten patients in the DBS group and eight patients in the best medical treatment group had severe psychiatric adverse events. INTERPRETATION DBS of the STN does not reduce overall cognition or affectivity, although there is a selective decrease in frontal cognitive functions and an improvement in anxiety in patients after the treatment. These changes do not affect improvements in quality of life. DBS of the STN is safe with respect to neuropsychological and psychiatric effects in carefully selected patients during a 6-month follow-up period. FUNDING German Federal Ministry of Education and Research (01GI0201).


Movement Disorders | 2010

Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson's disease†

Elena Moro; Andres M. Lozano; Pierre Pollak; Yves Agid; Stig Rehncrona; Jens Volkmann; Jaime Kulisevsky; Jose A. Obeso; Alberto Albanese; Marwan Hariz; Niall Quinn; Jans D. Speelman; Alim L. Benabid; Valérie Fraix; Alexandre Mendes; Marie Laure Welter; Jean-Luc Houeto; Philippe Cornu; Didier Dormont; Annalena L. Tornqvist; Ron Ekberg; Alfons Schnitzler; Lars Timmermann; Lars Wojtecki; Andres Gironell; Maria C. Rodriguez-Oroz; Jorge Guridi; Anna Rita Bentivoglio; Maria Fiorella Contarino; Luigi Romito

We report the 5 to 6 year follow‐up of a multicenter study of bilateral subthalamic nucleus (STN) and globus pallidus internus (GPi) deep brain stimulation (DBS) in advanced Parkinsons disease (PD) patients. Thirty‐five STN patients and 16 GPi patients were assessed at 5 to 6 years after DBS surgery. Primary outcome measure was the stimulation effect on the motor Unified Parkinsons Disease Rating Scale (UPDRS) assessed with a prospective cross‐over double‐blind assessment without medications (stimulation was randomly switched on or off). Secondary outcomes were motor UPDRS changes with unblinded assessments in off‐ and on‐medication states with and without stimulation, activities of daily living (ADL), anti‐PD medications, and dyskinesias. In double‐blind assessment, both STN and GPi DBS were significantly effective in improving the motor UPDRS scores (STN, P < 0.0001, 45.4%; GPi, P = 0.008, 20.0%) compared with off‐stimulation, regardless of the sequence of stimulation. In open assessment, both STN‐ and GPi‐DBS significantly improved the off‐medication motor UPDRS when compared with before surgery (STN, P < 0.001, 50.5%; GPi, P = 0.002, 35.6%). Dyskinesias and ADL were significantly improved in both groups. Anti‐PD medications were significantly reduced only in the STN group. Adverse events were more frequent in the STN group. These results confirm the long‐term efficacy of STN and GPi DBS in advanced PD. Although the surgical targets were not randomized, there was a trend to a better outcome of motor signs in the STN‐DBS patients and fewer adverse events in the GPi‐DBS group.


NeuroImage | 2011

Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson's disease

Jan Hirschmann; Tolga Esat Özkurt; Markus Butz; M. Homburger; Saskia Elben; Christian J. Hartmann; Jan Vesper; Lars Wojtecki; Alfons Schnitzler

Neuronal oscillations are assumed to play a pivotal role in the pathophysiology of Parkinsons disease (PD). Neurons in the subthalamic nucleus (STN) generate oscillations which are coupled to rhythmic population activity both in other basal ganglia nuclei and cortical areas. In order to localize these cortical areas, we recorded local field potentials (LFPs) and magnetoencephalography (MEG) simultaneously in PD patients undergoing surgery for deep brain stimulation (DBS). Patients were withdrawn from antiparkinsonian medication and recorded at rest. We scanned the entire brain for oscillations coherent with LFPs recorded from the STN with a frequency domain beamformer. Coherent activity in the low (12-20 Hz) and high (20-35 Hz) beta range was found in the ipsilateral sensorimotor and the premotor cortex. Coherence in the alpha range (7-12 Hz) was observed at various locations in the ipsilateral temporal lobe. In a subset of subjects, the superior temporal gyrus consistently showed coherent alpha oscillations. Our findings provide new insights into patterns of frequency-specific functional connectivity between basal ganglia and cortex and suggest that simultaneous inter-regional interactions may be segregated in the frequency domain. Furthermore, they demonstrate that simultaneous MEG-LFP recordings are a powerful tool to study interactions between brain areas in PD patients undergoing surgery for DBS.


Movement Disorders | 2004

Ten-Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson's disease.

Lars Timmermann; Lars Wojtecki; Joachim Gross; Ralph Lehrke; Jürgen Voges; Mohammed Maarouf; Harald Treuer; Volker Sturm; Alfons Schnitzler

Recently, a pathological oscillatory network at 10 Hz including several motor areas was described in patients with idiopathic Parkinsons disease (PD). In 7 PD patients, we tested the clinical effect of subthalamic nucleus (STN) stimulation at varying frequencies 1 to 3 years after implantation of electrodes. STN stimulation at 10 Hz induced significant worsening of motor symptoms, especially akinesia, compared with no stimulation and therapeutic stimulation (≥130 Hz). This finding indicates the clinical relevance of pathological 10 Hz synchronization in PD.


Experimental Neurology | 2011

High frequency oscillations in the subthalamic nucleus: a neurophysiological marker of the motor state in Parkinson's disease.

Tolga Esat Özkurt; Markus Butz; Melanie Homburger; Saskia Elben; Jan Vesper; Lars Wojtecki; Alfons Schnitzler

Increasing evidence suggests that abnormal oscillatory activity in basal ganglia and cortex plays a pivotal role in the pathophysiology of Parkinsons disease. Recordings of local field potentials from subthalamic nucleus of patients undergoing deep brain stimulation have focused on oscillations occurring at frequencies below 100 Hz in the alpha, beta and gamma range and suggested that, in particular, an increase of beta band oscillations underlies slowing of movement in Parkinsons disease. Recent findings showing that the amplitude of high frequency oscillations (>200 Hz) couples with the phase of beta activity have raised the important question about the role of subthalamic high frequency oscillations in Parkinsons disease. To investigate functional characteristics and clinical relevance of high frequency oscillations, we recorded local field potentials from 18 subthalamic nuclei of 9 akinetic-rigid Parkinsonian patients with implanted deep brain stimulation electrodes and still externalised leads before and after intake of levodopa. We identified two distinct bands of high frequency oscillations, one centred around 250 Hz and another one around 350 Hz that show characteristic levodopa dependent amplitude and coupling behaviours. Administration of levodopa changed the power ratio between the two high frequency bands towards the component centred around 350 Hz in all 18 nuclei under study (p<10(-4)). Moreover, this power ratio correlated significantly with the Unified Parkinsons Disease Rating Scale hemibody akinesia/rigidity subscore (r=0.3618, p=0.015), but interestingly not with beta peak power (p=0.1) suggesting that levodopa induced changes in high frequency and beta oscillations are at least potentially independent of each other. Accordingly, a combined parameter composed of power ratio of high frequency oscillations and beta peak power significantly increased the correlation with the motor state (r=0.45, p=0.004). These results indicate that a shift from slower to faster frequencies of the spectrum greater than 200 Hz represents a prokinetic neurophysiological marker underlying levodopa induced motor improvement in Parkinsons disease.


Therapeutic Advances in Neurological Disorders | 2009

Deep brain stimulation in Parkinson's disease

Stefan Jun Groiss; Lars Wojtecki; Martin Südmeyer; Alfons Schnitzler

During the last 15 years deep brain stimulation (DBS) has been established as a highly-effective therapy for advanced Parkinson’s disease (PD). Patient selection, stereotactic implantation, postoperative stimulator programming and patient care requires a multi-disciplinary team including movement disorders specialists in neurology and functional neurosurgery. To treat medically refractory levodopa-induced motor complications or resistant tremor the preferred target for high-frequency DBS is the subthalamic nucleus (STN). STN-DBS results in significant reduction of dyskinesias and dopaminergic medication, improvement of all cardinal motor symptoms with sustained long-term benefits, and significant improvement of quality of life when compared with best medical treatment. These benefits have to be weighed against potential surgery-related adverse events, device-related complications, and stimulus-induced side effects. The mean disease duration before initiating DBS in PD is currently about 13 years. It is presently investigated whether the optimal timing for implantation may be at an earlier disease-stage to prevent psychosocial decline and to maintain quality of life for a longer period of time.


European Journal of Neuroscience | 2009

Characterisation of tremor-associated local field potentials in the subthalamic nucleus in Parkinson's disease.

Christiane Reck; Esther Florin; Lars Wojtecki; Holger Krause; Stefan Jun Groiss; Jürgen Voges; Mohammad Maarouf; Volker Sturm; Alfons Schnitzler; Lars Timmermann

We simultaneously recorded local field potentials (LFPs) in the subthalamic nucleus (STN) and surface electromyographic signals (EMGs) from the extensor and flexor muscles of the contralateral forearm in eight patients with idiopathic tremor‐dominant Parkinson’s disease (resting tremor) during the bilateral implantation of deep brain stimulation electrodes. Recordings were made at different heights (in 0.5‐ to 2.0‐mm steps beginning outside the STN) using up to five concentrically configured macroelectrodes (2 mm apart). The patients were instructed to relax their contralateral forearm (rest condition). We analysed the coherence between tremor EMGs and STN LFPs, which showed significant tremor‐associated coupling at single tremor and double tremor frequencies. Moreover, the EMG–LFP coherences were characterised by differences between antagonistic muscles (flexor, extensor) and by the spatial distribution of LFPs within the STN. Coherence at single and double tremor frequencies occurred significantly more frequently within STN than above STN (in the zona incerta). In this study, we were able to show that, within STN, tremor‐associated LFP activity varied with spatial distribution and with the contralateral antagonistic forearm muscles. These findings suggest the existence of distribution‐ and muscle‐specific tremor‐associated LFP activity at different tremor frequencies and an organisation of tremor‐related subloops within the STN.


The Journal of Nuclear Medicine | 2011

Diagnostic Accuracy of Combined FP-CIT, IBZM, and MIBG Scintigraphy in the Differential Diagnosis of Degenerative Parkinsonism: A Multidimensional Statistical Approach

Martin Südmeyer; Christina Antke; Tanja Zizek; Markus Beu; Lars Wojtecki; Alfons Schnitzler; Hans-Wilhelm Müller

In vivo molecular imaging of pre- and postsynaptic nigrostriatal neuronal degeneration and sympathetic cardiac innervation with SPECT is used to distinguish idiopathic Parkinson disease (PD) from atypical parkinsonian disorder (APD). However, the diagnostic accuracy of these imaging approaches as stand-alone procedures is often unsatisfying. The aim of this study was therefore to evaluate to which extent diagnostic accuracy can be increased by their combined use together with a multidimensional statistical algorithm. Methods: The SPECT radiotracers 123I-(S)-2-hydroxy-3-iodo-6-methoxy-N-[1-ethyl-2-pyrrodinyl)-methyl]benzamide (IBZM), 123I-N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropan (FP-CIT), and meta-123I-iodobenzylguanidine (MIBG) were used to assess striatal postsynaptic D2 receptor binding, striatal presynaptic dopamine transporter binding, and myocardial adrenergic innervation, respectively. Thirty-one PD and 17 APD patients were prospectively investigated. PD and APD diagnoses were established using consensus criteria and reevaluated after 37.4 ± 12.4 and 26 ± 11.6 mo in PD and APD, respectively. Test accuracy (TA) for PD–APD differentiation was computed for all logical (Boolean) combinations of imaging modalities by receiver-operating-characteristic analysis—that is, after multidimensional optimization of cutoff values. Results: Analysis showed moderate TA for PD–APD differentiation using each molecular approach alone (IBZM, 79%; MIBG, 73%; and FP-CIT, 73%). For combined use, the highest TA resulted under the assumption that at least 2 of the 3 biologic markers had to be positive for APD using the following cutoff values: 1.46 or less for IBZM, less than 2.10 for FP-CIT, and greater than 1.43 for MIBG. This algorithm distinguished APD from PD with a sensitivity of 94%, specificity of 94% (TA, 94%), positive predictive value of 89%, and negative predictive value of 97%. Conclusion: Results suggest that the multidimensional combination of FP-CIT, IBZM, and MIBG scintigraphy is likely to significantly increase TA in differentiating PD from APD. The differential diagnosis of degenerative parkinsonism may thus be facilitated.


Movement Disorders | 2010

Risk factors for executive dysfunction after subthalamic nucleus stimulation in Parkinson's disease.

Christine Daniels; Paul Krack; Jens Volkmann; M. O. Pinsker; Martin Krause; Volker M. Tronnier; Manja Kloss; Alfons Schnitzler; Lars Wojtecki; Kai Bötzel; Adrian Danek; Rüdiger Hilker; Volker Sturm; Elfriede Karner; Günther Deuschl; Karsten Witt

A slight decline in cognitive functions and especially in executive functioning after deep brain stimulation (DBS) of the nucleus subthalamicus (STN) in patients with Parkinsons disease (PD) has been described. This study evaluated baseline parameters that contribute to a deterioration of cognitive functioning after DBS. We analyzed data from the neuropsychological protocol in a randomized controlled study comparing DBS with best medical treatment (BMT). Change scores were calculated for the cognitive domains “global cognitive functioning,” “memory,” “working memory,” “attention,” and “executive function.” These domain‐specific change scores were correlated with previously defined preoperative parameters. Compared with the BMT group (63 patients), the STN‐DBS group (60 patients) showed a significant decline only in the domain executive function 6 months after DBS, which was significantly correlated with age, levodopa‐equivalence dosage (LED) and axial subscore of the UPDRS in the off‐medication state at baseline. Multiple regression analysis showed that these three factors explained, however, only about 23% of the variance. Patients with higher age, higher baseline LED, and/or higher axial subscore of the UPDRS at baseline have an increased risk for worsening of executive function after STN‐DBS. High scores of these factors might reflect an advanced stage of disease progression. As these baseline factors explained the variance of the change score executive function only to a minor proportion, other factors including the surgical procedure, the exact placement of the electrode or postsurgical management might be more relevant for a decline in executive functioning after STN‐DBS.

Collaboration


Dive into the Lars Wojtecki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Vesper

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Saskia Elben

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christiane Reck

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge