Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lasse Gaarde Falkenby is active.

Publication


Featured researches published by Lasse Gaarde Falkenby.


The EMBO Journal | 2011

Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods

Lis Jakobsen; Katja Vanselow; Marie Skogs; Yusuke Toyoda; Emma Lundberg; Ina Poser; Lasse Gaarde Falkenby; Martin V. Bennetzen; Jens Westendorf; Erich A. Nigg; Mathias Uhlén; Anthony A. Hyman; Jens S. Andersen

Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that mediate key signalling events. Despite recent advances, the molecular basis for the plethora of processes coordinated by centrosomes is not fully understood. We have combined protein identification and localization, using PCP‐SILAC mass spectrometry, BAC transgeneOmics, and antibodies to define the constituents of human centrosomes. From a background of non‐specific proteins, we distinguished 126 known and 40 candidate centrosomal proteins, of which 22 were confirmed as novel components. An antibody screen covering 4000 genes revealed an additional 113 candidates. We illustrate the power of our methods by identifying a novel set of five proteins preferentially associated with mother or daughter centrioles, comprising genes implicated in cell polarity. Pulsed labelling demonstrates a remarkable variation in the stability of centrosomal protein complexes. These spatiotemporal proteomics data provide leads to the further functional characterization of centrosomal proteins.


Molecular Cell | 2011

Interaction Profiling Identifies the Human Nuclear Exosome Targeting Complex

Michal Lubas; Marianne S. Christensen; Maiken Søndergaard Kristiansen; Michal Domanski; Lasse Gaarde Falkenby; Søren Lykke-Andersen; Jens S. Andersen; Andrzej Dziembowski; Torben Heick Jensen

The RNA exosome is a conserved degradation machinery, which obtains full activity only when associated with cofactors. The most prominent activator of the yeast nuclear exosome is the RNA helicase Mtr4p, acting in the context of the Trf4p/Air2p/Mtr4p polyadenylation (TRAMP) complex. The existence of a similar activator(s) in humans remains elusive. By establishing an interaction network of the human nuclear exosome, we identify the trimeric Nuclear Exosome Targeting (NEXT) complex, containing hMTR4, the Zn-knuckle protein ZCCHC8, and the putative RNA binding protein RBM7. ZCCHC8 and RBM7 are excluded from nucleoli, and consistently NEXT is specifically required for the exosomal degradation of promoter upstream transcripts (PROMPTs). We also detect putative homolog TRAMP subunits hTRF4-2 (Trf4p) and ZCCHC7 (Air2p) in hRRP6 and hMTR4 precipitates. However, at least ZCCHC7 function is restricted to nucleoli. Our results suggest that human nuclear exosome degradation pathways comprise modules of spatially organized cofactors that diverge from the yeast model.


Environmental Microbiology | 2011

Comparative proteomics and activity of a green sulfur bacterium through the water column of Lake Cadagno, Switzerland

Kirsten S. Habicht; Mette Miller; Raymond P. Cox; Niels-Ulrik Frigaard; Mauro Tonolla; Sandro Peduzzi; Lasse Gaarde Falkenby; Jens S. Andersen

Primary production in the meromictic Lake Cadagno, Switzerland, is dominated by anoxygenic photosynthesis. The green sulfur bacterium Chlorobium clathratiforme is the dominant phototrophic organism in the lake, comprising more than half of the bacterial population, and its biomass increases 3.8-fold over the summer. Cells from four positions in the water column were used for comparative analysis of the Chl. clathratiforme proteome in order to investigate changes in protein composition in response to the chemical and physical gradient in their environment, with special focus on how the bacteria survive in the dark. Although metagenomic data are not available for Lake Cadagno, proteome analysis was possible based on the completely sequenced genome of an isolated strain of Chl. clathratiforme. Using LC-MS/MS we identified 1321 Chl. clathratiforme proteins in Lake Cadagno and quantitatively compared 621 of these in the four samples. Our results showed that compared with cells obtained from the photic zone, cells collected from the dark part of the water column had the same expression level of key enzymes involved in carbon metabolism and photosynthetic light harvesting. However, most proteins participating in nitrogen and sulfur metabolism were twofold less abundant in the dark. From the proteome analysis we were able to show that Chl. clathratiforme in the photic zone contains enzymes for fixation of N(2) and the complete oxidation of sulfide to sulfate while these processes are probably not active in the dark. Instead we propose that Chl. clathratiforme cells in the dark part of the water column obtain energy for maintenance from the fermentation of polyglucose. Based on the observed protein compositions we have constructed possible pathways for C, N and S metabolism in Chl. clathratiforme.


Molecular & Cellular Proteomics | 2015

Proteotranscriptomic Profiling of 231-BR Breast Cancer Cells: Identification of Potential Biomarkers and Therapeutic Targets for Brain Metastasis

Matthew D. Dun; Robert J. Chalkley; Sam Faulkner; Sheridan Keene; Kelly A. Avery-Kiejda; Rodney J. Scott; Lasse Gaarde Falkenby; Murray J. Cairns; Martin R. Larsen; Ralph A. Bradshaw; Hubert Hondermarck

Brain metastases are a devastating consequence of cancer and currently there are no specific biomarkers or therapeutic targets for risk prediction, diagnosis, and treatment. Here the proteome of the brain metastatic breast cancer cell line 231-BR has been compared with that of the parental cell line MDA-MB-231, which is also metastatic but has no organ selectivity. Using SILAC and nanoLC-MS/MS, 1957 proteins were identified in reciprocal labeling experiments and 1584 were quantified in the two cell lines. A total of 152 proteins were confidently determined to be up- or down-regulated by more than twofold in 231-BR. Of note, 112/152 proteins were decreased as compared with only 40/152 that were increased, suggesting that down-regulation of specific proteins is an important part of the mechanism underlying the ability of breast cancer cells to metastasize to the brain. When matched against transcriptomic data, 43% of individual protein changes were associated with corresponding changes in mRNA, indicating that the transcript level is a limited predictor of protein level. In addition, differential miRNA analyses showed that most miRNA changes in 231-BR were up- (36/45) as compared with down-regulations (9/45). Pathway analysis revealed that proteome changes were mostly related to cell signaling and cell cycle, metabolism and extracellular matrix remodeling. The major protein changes in 231-BR were confirmed by parallel reaction monitoring mass spectrometry and consisted in increases (by more than fivefold) in the matrix metalloproteinase-1, ephrin-B1, stomatin, myc target-1, and decreases (by more than 10-fold) in transglutaminase-2, the S100 calcium-binding protein A4, and l-plastin. The clinicopathological significance of these major proteomic changes to predict the occurrence of brain metastases, and their potential value as therapeutic targets, warrants further investigation.


Fems Microbiology Letters | 2011

Quantitative proteomics of Chlorobaculum tepidum: insights into the sulfur metabolism of a phototrophic green sulfur bacterium.

Lasse Gaarde Falkenby; Monika Szymanska; Carina Holkenbrink; Kirsten S. Habicht; Jens S. Andersen; Mette Miller; Niels-Ulrik Frigaard

Chlorobaculum (Cba.) tepidum is a green sulfur bacterium that oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. To gain insight into the sulfur metabolism, the proteome of Cba. tepidum cells sampled under different growth conditions has been quantified using a rapid gel-free, filter-aided sample preparation (FASP) protocol with an in-solution isotopic labeling strategy. Among the 2245 proteins predicted from the Cba. tepidum genome, approximately 970 proteins were detected in unlabeled samples, whereas approximately 630-640 proteins were detected in labeled samples comparing two different growth conditions. Wild-type cells growing on thiosulfate had an increased abundance of periplasmic cytochrome c-555 and proteins of the periplasmic thiosulfate-oxidizing SOX enzyme system when compared with cells growing on sulfide. A dsrM mutant of Cba. tepidum, which lacks the dissimilatory sulfite reductase DsrM protein and therefore is unable to oxidize sulfur globules to sulfite, was also investigated. When compared with wild type, the dsrM cells exhibited an increased abundance of DSR enzymes involved in the initial steps of sulfur globule oxidation (DsrABCL) and a decreased abundance of enzymes putatively involved in sulfite oxidation (Sat-AprAB-QmoABC). The results show that Cba. tepidum regulates the cellular levels of enzymes involved in sulfur metabolism and other electron-transferring processes in response to the availability of reduced sulfur compounds.


Journal of Proteome Research | 2014

Integrated Solid-Phase Extraction–Capillary Liquid Chromatography (speLC) Interfaced to ESI–MS/MS for Fast Characterization and Quantification of Protein and Proteomes

Lasse Gaarde Falkenby; Gerard Such-Sanmartín; Martin R. Larsen; Ole Vorm; Nicolai Bache; Ole Nørregaard Jensen

The high peptide sequencing speed provided by modern hybrid tandem mass spectrometers enables the utilization of fast liquid chromatographic (LC) separation techniques. We present a robust solid-phase extraction/capillary LC system (speLC) for 5-10 min separation of semicomplex peptide mixtures prior to ESI-MS/MS for peptide sequencing. This speLC-MS/MS system eliminates sample-to-sample carry-over by using disposable micropipette solid-phase extraction tips (StageTips) for peptide sample loading, concentration, and desalting. Automated analysis of 192 replicates of E. coli peptide mixtures in 30 h demonstrated the throughput, stability, and reproducibility of the system. The speLC-MS/MS system detected low-femtomole amounts of peptides and allowed sequencing of 1 μg of HeLa cells protein extracts at a rate of ∼ 90 peptides/min, identifying more than 1500 peptides (>500 proteins) in a 10 min speLC-MS/MS experiment. Analysis by selected reaction monitoring by speLC-SRM-MS/MS of distinct peptides derived from the blood proteins IGF1, IGF2, IBP2, and IBP3 demonstrated protein quantification with CV values below 10% across 96 replicates. The speLC-MS/MS system is ideally suited for fast screening and characterization of large numbers of peptide-containing samples in biological, biomedical, and clinical laboratories.


Proteomics | 2018

A Targeted LC-MS Strategy for Low-Abundant HLA Class-I-Presented Peptide Detection Identifies Novel Human Papillomavirus T-Cell Epitopes

Renata Blatnik; Nitya Mohan; Maria Bonsack; Lasse Gaarde Falkenby; Stephanie Hoppe; Kathrin Josef; Alina Steinbach; Sara Becker; Wiebke Nadler; Marijana Rucevic; Martin R. Larsen; Mogjiborahman Salek; Angelika B. Riemer

For rational design of therapeutic vaccines, detailed knowledge about target epitopes that are endogenously processed and truly presented on infected or transformed cells is essential. Many potential target epitopes (viral or mutation‐derived), are presented at low abundance. Therefore, direct detection of these peptides remains a challenge. This study presents a method for the isolation and LC‐MS3‐based targeted detection of low‐abundant human leukocyte antigen (HLA) class‐I‐presented peptides from transformed cells. Human papillomavirus (HPV) was used as a model system, as the HPV oncoproteins E6 and E7 are attractive therapeutic vaccination targets and expressed in all transformed cells, but present at low abundance due to viral immune evasion mechanisms. The presented approach included preselection of target antigen‐derived peptides by in silico predictions and in vitro binding assays. The peptide purification process was tailored to minimize contaminants after immunoprecipitation of HLA‐peptide complexes, while keeping high isolation yields of low‐abundant target peptides. The subsequent targeted LC‐MS3 detection allowed for increased sensitivity, which resulted in successful detection of the known HLA‐A2‐restricted epitope E711–19 and ten additional E7‐derived peptides on the surface of HPV16‐transformed cells. T‐cell reactivity was shown for all the 11 detected peptides in ELISpot assays, which shows that detection by our approach has high predictive value for immunogenicity. The presented strategy is suitable for validating even low‐abundant candidate epitopes to be true immunotherapy targets.


Proteomics | 2016

Covalent perturbation as a tool for validation of identifications and PTM mapping applied to bovine alpha-crystallin

Jakob Bunkenborg; Lasse Gaarde Falkenby; Lea M. Harder; Henrik Molina

Proteomic identifications hinge on the measurement of both parent and fragment masses and matching these to amino acid sequences via database search engines. The correctness of the identifications is assessed by statistical means. Here we present an experimental approach to test identifications. Chemical modification of all peptides in a sample leads to shifts in masses depending on the chemical properties of each peptide. The identification of a native peptide sequence and its perturbed version with a different parent mass and fragment ion masses provides valuable information. Labeling all peptides using reductive alkylation with formaldehyde is one such perturbation where the ensemble of peptides shifts mass depending on the number of reactive amine groups. Matching covalently perturbed fragmentation patterns from the same underlying peptide sequence increases confidence in the assignments and can salvage low scoring post‐translationally modified peptides. Applying this strategy to bovine alpha‐crystallin, we identify 9 lysine acetylation sites, 4 O‐GlcNAc sites and 13 phosphorylation sites.


Chemical Communications | 2014

Quantitative proteomics identifies unanticipated regulators of nitrogen- and glucose starvation

Steven Vestergaard Rødkær; Dennis Pultz; Michelle Brusch; Martin V. Bennetzen; Lasse Gaarde Falkenby; Jens S. Andersen; Nils J. Færgeman

The molecular mechanisms underlying how cells sense, respond, and adapt to alterations in nutrient availability have been studied extensively during the past years. While most of these studies have focused on the linear connections between signaling components, it is increasingly being recognized that signaling pathways are interlinked in molecular circuits and networks such that any metabolic perturbation will induce signaling-wide ripple effects. In the present study, we have used quantitative mass spectrometry (MS) to examine how the yeast Saccharomyces cerevisiae responds to nitrogen- or glucose starvation. We identify nearly 1400 phosphorylation sites of which more than 500 are regulated in a temporal manner in response to glucose- or nitrogen starvation. By bioinformatics and network analyses, we have identified the cyclin-dependent kinase (CDK) inhibitor Sic1, the Hsp90 co-chaperone Cdc37, and the Hsp90 isoform Hsp82 to putatively mediate some of the starvation responses. Consistently, quantitative expression analyses showed that Sic1, Cdc37, and Hsp82 are required for normal expression of nutrient-responsive genes. Collectively, we therefore propose that Sic1, Cdc37, and Hsp82 may orchestrate parts of the cellular starvation response by regulating transcription factor- and kinase activities.


Molecular & Cellular Proteomics | 2018

A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics

Nicolai Bache; Philipp E. Geyer; Dorte B. Bekker-Jensen; Ole Hoerning; Lasse Gaarde Falkenby; Peter V. Treit; Sophia Doll; Igor Paron; Johannes Bruno Müller; Florian Meier; J. Olsen; Ole Vorm; Matthias Mann

Collaboration


Dive into the Lasse Gaarde Falkenby's collaboration.

Top Co-Authors

Avatar

Jens S. Andersen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Kirsten S. Habicht

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Mette Miller

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jakob Bunkenborg

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Martin R. Larsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Lea M. Harder

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Martin V. Bennetzen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Nicolai Bache

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Raymond P. Cox

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge