Lasse K. Bak
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lasse K. Bak.
Journal of Cerebral Blood Flow and Metabolism | 2006
Lasse K. Bak; Arne Schousboe; Ursula Sonnewald; Helle S. Waagepetersen
Glucose is the primary energy substrate for the adult mammalian brain. However, lactate produced within the brain might be able to serve this purpose in neurons. In the present study, the relative significance of glucose and lactate as substrates to maintain neurotransmitter homeostasis was investigated. Cultured cerebellar (primarily glutamatergic) neurons were superfused in medium containing [U-13C]glucose (2.5 mmol/L) and lactate (1 or 5 mmol/L) or glucose (2.5 mmol/L) and [U-13C]lactate (1 mmol/L), and exposed to pulses of N-methyl-D-aspartate (300 μmol/L), leading to synaptic activity including vesicular release. The incorporation of 13C label into intracellular lactate, alanine, succinate, glutamate, and aspartate was determined by mass spectrometry. The metabolism of [U-13C]lactate under non-depolarizing conditions was high compared with that of [U-13C]glucose; however, it decreased significantly during induced depolarization. In contrast, at both concentrations of extracellular lactate, the metabolism of [U-13C]glucose was increased during neuronal depolarization. The role of glucose and lactate as energy substrates during vesicular release as well as transporter-mediated influx and efflux of glutamate was examined using preloaded D-[3H]aspartate as a glutamate tracer and DL-threo-β-benzyloxyaspartate to inhibit glutamate transporters. The results suggest that glucose is essential to prevent depolarization-induced reversal of the transporter (efflux), whereas vesicular release was unaffected by the choice of substrate. In conclusion, the present study shows that glucose is a necessary substrate to maintain neurotransmitter homeostasis during synaptic activity and that synaptic activity does not induce an upregulation of lactate metabolism in glutamatergic neurons.
Neurochemistry International | 2004
Arne Schousboe; Alan Sarup; Lasse K. Bak; Helle S. Waagepetersen; Orla M. Larsson
The fine tuning of both glutamatergic and GABAergic neurotransmission is to a large extent dependent upon optimal function of astrocytic transport processes. Thus, glutamate transport in astrocytes is mandatory to maintain extrasynaptic glutamate levels sufficiently low to prevent excitotoxic neuronal damage. In GABA synapses hyperactivity of astroglial GABA uptake may lead to diminished GABAergic inhibitory activity resulting in seizures. As a consequence of this the expression and functional activity of astrocytic glutamate and GABA transport is regulated in a number of ways at transcriptional, translational and post-translational levels. This opens for a number of therapeutic strategies by which the efficacy of excitatory and inhibitory neurotransmission may be manipulated.
Frontiers in Endocrinology | 2013
Arne Schousboe; Lasse K. Bak; Helle S. Waagepetersen
Glutamate and GABA are the quantitatively major neurotransmitters in the brain mediating excitatory and inhibitory signaling, respectively. These amino acids are metabolically interrelated and at the same time they are tightly coupled to the intermediary metabolism including energy homeostasis. Astrocytes play a pivotal role in the maintenance of the neurotransmitter pools of glutamate and GABA since only these cells express pyruvate carboxylase, the enzyme required for de novo synthesis of the two amino acids. Such de novo synthesis is obligatory to compensate for catabolism of glutamate and GABA related to oxidative metabolism when the amino acids are used as energy substrates. This, in turn, is influenced by the extent to which the cycling of the amino acids between neurons and astrocytes may occur. This cycling is brought about by the glutamate/GABA – glutamine cycle the operation of which involves the enzymes glutamine synthetase (GS) and phosphate-activated glutaminase together with the plasma membrane transporters for glutamate, GABA, and glutamine. The distribution of these proteins between neurons and astrocytes determines the efficacy of the cycle and it is of particular importance that GS is exclusively expressed in astrocytes. It should be kept in mind that the operation of the cycle is associated with movement of ammonia nitrogen between the two cell types and different mechanisms which can mediate this have been proposed. This review is intended to delineate the above mentioned processes and to discuss quantitatively their relative importance in the homeostatic mechanisms responsible for the maintenance of optimal conditions for the respective neurotransmission processes to operate.
Frontiers in Neuroenergetics | 2012
Linea F. Obel; Margit S. Müller; Anne B. Walls; Helle M. Sickmann; Lasse K. Bak; Helle S. Waagepetersen; Arne Schousboe
Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia. In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies—it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms underlying glycogen metabolism. Based on (1) the compartmentation of the interconnected second messenger pathways controlling glycogen metabolism (calcium and cAMP), (2) alterations in the subcellular location of glycogen-associated enzymes and proteins induced by the metabolic status and (3) a sequential component in the intermolecular mechanisms of glycogen metabolism, we suggest that glycogen metabolism in astrocytes is compartmentalized at the subcellular level. As a consequence, the meaning and importance of conventional terms used to describe glycogen metabolism (e.g., turnover) is challenged. Overall, this review represents an overview of contemporary knowledge about brain glycogen and its metabolism and function. However, it also has a sharp focus on what we do not know, which is perhaps even more important for the future quest of uncovering the roles of glycogen in brain physiology and pathology.
Advances in neurobiology | 2014
Arne Schousboe; Susanna Scafidi; Lasse K. Bak; Helle S. Waagepetersen; Mary C. McKenna
Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplerotic enzyme pyruvate carboxylase and glutamine synthetase. Glutamate is formed directly from glutamine by deamidation via phosphate activated glutaminase a reaction that also yields ammonia. Glutamate plays key roles linking carbohydrate and amino acid metabolism via the tricarboxylic acid (TCA) cycle, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools in both glutamatergic and GABAergic neurons. Since the glutamate-glutamine cycle is an open cycle that actively interfaces with other pathways, the de novo synthesis of glutamine in astrocytes helps to maintain the operation of this cycle. The fine-tuned biochemical specialization of astrocytes allows these cells to respond to subtle changes in neurotransmission by dynamically adjusting their anaplerotic and glycolytic activities, and adjusting the amount of glutamate oxidized for energy relative to direct formation of glutamine, to meet the demands for maintaining neurotransmission. This chapter summarizes the evidence that astrocytes are essential and dynamic partners in both glutamatergic and GABAergic neurotransmission in brain.
Gastroenterology | 2009
Peter Iversen; Michael Sørensen; Lasse K. Bak; Helle S. Waagepetersen; Manouchehr Seyedi Vafaee; Per Borghammer; Kim Mouridsen; Svend Borup Jensen; Hendrik Vilstrup; Arne Schousboe; Peter Ott; Albert Gjedde; Susanne Keiding
BACKGROUND & AIMS It is unclear whether patients with hepatic encephalopathy (HE) have disturbed brain oxygen metabolism and blood flow. METHODS We measured cerebral oxygen metabolism rate (CMRO(2)) by using (15)O-oxygen positron emission tomography (PET); and cerebral blood flow (CBF) by using (15)O-water PET in 6 patients with liver cirrhosis and an acute episode of overt HE, 6 cirrhotic patients without HE, and 7 healthy subjects. RESULTS Neither whole-brain CMRO(2) nor CBF differed significantly between cirrhotic patients without HE and healthy subjects, but were both significantly reduced in cirrhotic patients with HE (P < .01). CMRO(2) was 0.96 +/- 0.07 mumol oxygen/mL brain tissue/min (mean +/- SEM) in cirrhotic patients with HE, 1.34 +/- 0.08 in cirrhotic patients without HE, and 1.35 +/- 0.05 in healthy subjects; and CBF was 0.29 +/- 0.01 mL blood/mL brain tissue/min in patients with HE, 0.47 +/- 0.02 in patients without HE, and 0.49 +/- 0.03 in healthy subjects. CMRO(2) and CBF were correlated, and both variables correlated negatively with arterial ammonia concentration. Analysis of regional values, using individual magnetic resonance co-registrations, showed that the reductions in CMRO(2) and CBF in patients with HE were essentially generalized throughout the brain. CONCLUSIONS The observations imply that reduced cerebral oxygen consumption and blood flow in cirrhotic patients with an acute episode of overt HE are associated with HE and not cirrhosis as such, and that the primary event in the pathogenesis of HE could be inhibition of cerebral energy metabolism by increased blood ammonia.
Neurochemical Research | 2012
Sofie C. Lange; Lasse K. Bak; Helle S. Waagepetersen; Arne Schousboe; Michael D. Norenberg
During the past few decades of astrocyte research it has become increasingly clear that astrocytes have taken a central position in all central nervous system activities. Much of our new understanding of astrocytes has been derived from studies conducted with primary cultures of astrocytes. Such cultures have been an invaluable tool for studying roles of astrocytes in physiological and pathological states. Many central astrocytic functions in metabolism, amino acid neurotransmission and calcium signaling were discovered using this tissue culture preparation and most of these observations were subsequently found in vivo. Nevertheless, primary cultures of astrocytes are an in vitro model that does not fully mimic the complex events occurring in vivo. Here we present an overview of the numerous contributions generated by the use of primary astrocyte cultures to uncover the diverse functions of astrocytes. Many of these discoveries would not have been possible to achieve without the use of astrocyte cultures. Additionally, we address and discuss the concerns that have been raised regarding the use of primary cultures of astrocytes as an experimental model system.
Asn Neuro | 2012
Marko Kreft; Lasse K. Bak; Helle S. Waagepetersen; Arne Schousboe
Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.
Journal of Neurochemistry | 2009
Lasse K. Bak; Anne B. Walls; Arne Schousboe; Avi Ring; Ursula Sonnewald; Helle S. Waagepetersen
Although the brain utilizes glucose for energy production, individual brain cells may to some extent utilize substrates derived from glucose. Thus, it has been suggested that neurons consume extracellular lactate during synaptic activity. However, the precise role of lactate for fuelling neuronal activity is still poorly understood. Recently, we demonstrated that glucose metabolism is up‐regulated in cultured glutamatergic neurons during neurotransmission whereas that of lactate is not. Here, we show that utilization of glucose but not lactate correlates with NMDA‐induced neurotransmitter glutamate release in cultured cerebellar neurons from mice. Pulses of NMDA at 30, 100, and 300 μM, leading to a progressive increase in both cytosolic [Ca2+] and release of glutamate, increased uptake and metabolism of glucose but not that of lactate as evidenced by mass spectrometric measurement of 13C incorporation into intracellular glutamate. In this manuscript, a cascade of events for the preferential neuronal utilization of glucose during neurotransmission is suggested and discussed in relation to our current understanding of neuronal energy metabolism.
Hepatology | 2013
Gitte Dam; Susanne Keiding; Ole Lajord Munk; Peter Ott; Hendrik Vilstrup; Lasse K. Bak; Helle S. Waagepetersen; Arne Schousboe; Michael Sørensen
Studies have shown decreased cerebral oxygen metabolism (CMRO2) and blood flow (CBF) in patients with cirrhosis with hepatic encephalopathy (HE). It remains unclear, however, whether these disturbances are associated with HE or with cirrhosis itself and how they may relate to arterial blood ammonia concentration and cerebral metabolic rate of blood ammonia (CMRA). We addressed these questions in a paired study design by investigating patients with cirrhosis during and after recovery from an acute episode of HE type C. CMRO2, CBF, and CMRA were measured by dynamic positron emission tomography (PET)/computed tomography (CT). Ten patients with cirrhosis were studied during an acute episode of HE; nine were reexamined after recovery. Nine patients with cirrhosis with no history of HE served as controls. Mean CMRO2 increased from 0.73 μmol oxygen/mL brain tissue/min during HE to 0.91 μmol oxygen/mL brain tissue/min after recovery (paired t test; P < 0.05). Mean CBF increased from 0.28 mL blood/mL brain tissue/min during HE to 0.38 mL blood/mL brain tissue/min after recovery (P < 0.05). After recovery from HE, CMRO2 and CBF were not significantly different from values in the control patients. Arterial blood ammonia concentration decreased 20% after recovery (P < 0.05) and CMRA was unchanged (P > 0.30); both values were higher than in the control patients (both P < 0.05). Conclusion: The low values of CMRO2 and CBF observed during HE increased after recovery from HE and were thus associated with HE rather than the liver disease as such. The changes in CMRO2 and CBF could not be linked to blood ammonia concentration or CMRA. (HEPATOLOGY 2013)