Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lasse Mork Olsen is active.

Publication


Featured researches published by Lasse Mork Olsen.


Scientific Reports | 2017

Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

Philipp Assmy; Mar Fernández-Méndez; Pedro Duarte; Amelie Meyer; Achim Randelhoff; Christopher John Mundy; Lasse Mork Olsen; Hanna M. Kauko; Allison Bailey; Melissa Chierici; Lana Cohen; Anthony Paul Doulgeris; Jens K. Ehn; Agneta Fransson; Sebastian Gerland; Haakon Hop; Stephen R. Hudson; Nick Hughes; Polona Itkin; Geir Johnsen; Jennifer King; Boris Koch; Zoé Koenig; Slawomir Kwasniewski; Samuel R. Laney; Marcel Nikolaus; Alexey K. Pavlov; Chris Polashenski; Christine Provost; Anja Rösel

The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.


Journal of Phycology | 2008

TEMPERATURE EFFECTS ON MICROALGAL PHOTOSYNTHESIS-LIGHT RESPONSES MEASURED BY O2 PRODUCTION, PULSE-AMPLITUDE-MODULATED FLUORESCENCE, AND 14 C ASSIMILATION 1

Kasper Hancke; Torunn Torunn Beate Hancke; Lasse Mork Olsen; Geir Johnsen; Ronnie N. Glud

Short‐term temperature effects on photosynthesis were investigated by measuring O2 production, PSII‐fluorescence kinetics, and 14C‐incorporation rates in monocultures of the marine phytoplankton species Prorocentrum minimum (Pavill.) J. Schiller (Dinophyceae), Prymnesium parvum f. patelliferum (J. C. Green, D. J. Hibberd et Pienaar) A. Larsen (Coccolithophyceae), and Phaeodactylum tricornutum Bohlin (Bacillariophyceae), grown at 15°C and 80 μmol photons · m−2 · s−1. Photosynthesis versus irradiance curves were measured at seven temperatures (0°C–30°C) by all three approaches. The maximum photosynthetic rate (PCmax) was strongly stimulated by temperature, reached an optimum for Pro. minimum only (20°C–25°C), and showed a similar relative temperature response for the three applied methods, with Q10 ranging from 1.7 to 3.5. The maximum light utilization coefficient (αC) was insensitive or decreased slightly with increasing temperature. Absolute rates of O2 production were calculated from pulse‐amplitude‐modulated (PAM) fluorometry measurements in combination with biooptical determination of absorbed quanta in PSII. The relationship between PAM‐based O2 production and measured O2 production and 14C assimilation showed a species‐specific correlation, with 1.2–3.3 times higher absolute values of PCmax and αC when calculated from PAM data for Pry. parvum and Ph. tricornutum but equivalent for Pro. minimum. The offset seemed to be temperature insensitive and could be explained by a lower quantum yield for O2 production than the theoretical maximum (due to Mehler‐type reactions). Conclusively, the PAM technique can be used to study temperature responses of photosynthesis in microalgae when paying attention to the absorption properties in PSII.


FEMS Microbiology Ecology | 2003

Is phosphorus limitation of planktonic heterotrophic bacteria and accumulation of degradable DOC a normal phenomenon in phosphorus-limited systems? A microcosm study.

Olav Vadstein; Lasse Mork Olsen; Arild Busch; Tom Andersen; Helge Reinertsen

A dual isotope labelling technique was used to follow the distribution of carbon and phosphorus in plankton microcosms containing autotrophs (Tetraselmis sp.), heterotrophic bacteria and herbivores (Brachionus plicatilis) at eight different total-P concentrations. P:C ratios of algae, bacteria and dissolved matter, as well as the general accumulation of degradable dissolved organic carbon, indicated that both the autotrophs and heterotrophic bacteria were P-limited in all microcosms. According to the theory, such coexistence should only be possible if bacteria have higher predation losses than algae, which was definitely not the case in our experiment. However, data are consistent with the assumption that bacteria are superior in P uptake but have a poor ability to retain acquired P, which would promote coexistence in a patchy P-supply environment resulting from nutrient regeneration by metazoan grazers.


Microbial Ecology | 2002

Can phosphorus limitation inhibit dissolved organic carbon consumption in aquatic microbial food webs? A study of three food web structures in microcosms.

Lasse Mork Olsen; Helge Reinertsen; Olav Vadstein

Microcosms with three different food web structures and phosphorus (P) limited growth medium were used to study the interactions between P and organic carbon (C) fractions in pelagic food webs. The cultures were run with low dilution to allow the biological processes to determine the outcome. A double isotope technique was used to follow the C and P compartments. In all systems the primary production was P limited. The measured P:C ratios and the observed accumulation of degradable dissolved organic carbon (DOC) indicated that the growth of heterotrophic bacteria was also P limited. The presence of neither algal grazers nor flagellates feeding on bacteria altered the limitation pattern. A net loss of P from the bacterial fraction was observed after the bloom. Different strategies for nutrient aquisition and growth are proposed as mechanisms enabling simultaneous P limitation of algae and bacteria, and a concomitant accumulation of degradable DOC. The ability of the algae to grow with low P:C ratio keeps the regeneration of P through grazers low enough to cause sustained P limitation of both algae and bacteria. The grazers were important producers of DOC when present. This implies that the usual assumption of carbon limited bacterial growth may lead to wrong conclusions regarding the dynamics of plankton communities and the DOC pool.


Journal of Geophysical Research | 2017

Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead

Hanna M. Kauko; Torbjørn Taskjelle; Philipp Assmy; Alexey K. Pavlov; C. J. Mundy; Pedro Duarte; Mar Fernández-Méndez; Lasse Mork Olsen; Stephen R. Hudson; Geir Johnsen; Ashley Elliott; Feiyue Wang; Mats A. Granskog

The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5–82.4 °N) in May-June 2015 during the Norwegian young sea ICE expedition (N-ICE2015). We measured downwelling incident and ice transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs) and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modelled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artefacts due to osmotic shock during ice melting. Although observed PAR transmittance through the thin ice was 5–40 times that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.


Journal of Geophysical Research | 2017

The seeding of ice algal blooms in Arctic pack ice : the multiyear ice seed repository hypothesis

Lasse Mork Olsen; Samuel R. Laney; Pedro Duarte; Hanna M. Kauko; Mar Fernández-Méndez; Christopher John Mundy; Anja Rösel; Amelie Meyer; Polona Itkin; Lana Cohen; Ilka Peeken; Agnieszka Tatarek; Magdalena Róźańska-Pluta; Josef Wiktor; Torbjørn Taskjelle; Alexey K. Pavlov; Stephen R. Hudson; Mats A. Granskog; Haakon Hop; Philipp Assmy

During the Norwegian young sea ICE expedition (N-ICE2015) from January to June 2015 the pack ice in the Arctic Ocean north of Svalbard was studied during four drifts between 83° and 80° N. This pack ice consisted of a mix of second-year, first-year and young ice. The physical properties and ice algal community composition was investigated in the three different ice types during the winter-spring-summer transition. Our results indicate that algae remaining in sea ice that survived the summer melt season are subsequently trapped in the upper layers of the ice column during winter and may function as an algal seed repository. Once the connectivity in the entire ice column is established, as a result of temperature-driven increase in ice porosity during spring, algae in the upper parts of the ice are able to migrate towards the bottom and initiate the ice-algal spring bloom. Furthermore, this algal repository might seed the bloom in younger ice formed in adjacent leads. This mechanism was studied in detail for the often dominating ice diatom Nitzschia frigida.The proposed seeding mechanism may be compromised due to the disappearance of older ice in the anticipated regime shift towards a seasonally ice-free Arctic Ocean.


Frontiers in Microbiology | 2016

Microbial activity response to solar radiation across contrasting environmental conditions in Salar de Huasco, northern Chilean altiplano

Klaudia L. Hernández; Beatriz Yannicelli; Lasse Mork Olsen; Cristina Dorador; Eduardo Menschel; Verónica Molina; Francisco Remonsellez; Martha Hengst; Wade H. Jeffrey

In high altitude environments, extreme levels of solar radiation and important differences of ionic concentrations over narrow spatial scales may modulate microbial activity. In Salar de Huasco, a high-altitude wetland in the Andean mountains, the high diversity of microbial communities has been characterized and associated with strong environmental variability. Communities that differed in light history and environmental conditions, such as nutrient concentrations and salinity from different spatial locations, were assessed for bacterial secondary production (BSP, 3H-leucine incorporation) response from short-term exposures to solar radiation. We sampled during austral spring seven stations categorized as: (a) source stations, with recently emerged groundwater (no-previous solar exposure); (b) stream running water stations; (c) stations connected to source waters but far downstream from source points; and (d) isolated ponds disconnected from ground sources or streams with a longer isolation and solar exposure history. Very high values of 0.25 μE m-2 s-1, 72 W m-2 and 12 W m-2 were measured for PAR, UVA, and UVB incident solar radiation, respectively. The environmental factors measured formed two groups of stations reflected by principal component analyses (near to groundwater sources and isolated systems) where isolated ponds had the highest BSP and microbial abundance (35 microalgae taxa, picoeukaryotes, nanoflagellates, and bacteria) plus higher salinities and PO43- concentrations. BSP short-term response (4 h) to solar radiation was measured by 3H-leucine incorporation under four different solar conditions: full sun, no UVB, PAR, and dark. Microbial communities established in waters with the longest surface exposure (e.g., isolated ponds) had the lowest BSP response to solar radiation treatments, and thus were likely best adapted to solar radiation exposure contrary to ground source waters. These results support our light history (solar exposure) hypothesis where the more isolated the community is from ground water sources, the better adapted it is to solar radiation. We suggest that factors other than solar radiation (e.g., salinity, PO43-, NO3-) are also important in determining microbial productivity in heterogeneous environments such as the Salar de Huasco.


Journal of Applied Remote Sensing | 2011

Improved monitoring of phytoplankton bloom dynamics in a Norwegian fjord by integrating satellite data, pigment analysis, and Ferrybox data with a coastal observation network

Zsolt Volent; Geir Johnsen; Erlend Kjeldsberg Hovland; Are Folkestad; Lasse Mork Olsen; Karl Tangen; Kai Sørensen

Monitoring of the coastal environment is vitally important as these areas are of economic value and at the same time highly exposed to anthropogenic influence, in addition to variation of environmental variables. In this paper we show how the combination of bio-optical data from satellites, analysis of water samples, and a ship-mounted automatic flow-through sensor system (Ferrybox) can be used to detect and monitor phytoplankton blooms both spatially and temporally. Chlorophyll a (Chl a) data and turbidity from Ferrybox are combined with remotely sensed Chl a and total suspended matter from the MERIS instrument aboard the satellite ENVISAT (ENVIronmental SATellite) European Space Agency. Data from phytoplankton speciation and enumeration obtained by a national coastal observation network consisting of fish farms and the Norwegian Food Safety Authority are supplemented with data on phytoplankton pigments. All the data sets are then integrated in order to describe phytoplankton bloom dynamics in a Norwegian fjord over a growth season, with particular focus on Emiliania huxleyi. The approach represents a case example of how coastal environmental monitoring can be improved with existing instrument platforms. The objectives of the paper is to present the operative phytoplankton monitoring scheme in Norway, and to present an improved model of how such a scheme can be designed for a large part of the worlds coastal areas.


Journal of Geophysical Research | 2017

Sea ice thermohaline dynamics and biogeochemistry in the Arctic Ocean: Empirical and model results

Pedro Duarte; Amelie Meyer; Lasse Mork Olsen; Hanna M. Kauko; Philipp Assmy; Anja Rösel; Polona Itkin; Stephen R. Hudson; Mats A. Granskog; Sebastian Gerland; Arild Sundfjord; Harald Steen; Haakon Hop; Lana Cohen; Algot Kristoffer Peterson; Nicole Jeffery; Scott Elliott; Elizabeth C. Hunke; Adrian K. Turner

Large changes in the sea ice regime of the Arctic Ocean have occurred over the last decades justifying the development of models to forecast sea ice physics and biogeochemistry. The main goal of this study is to evaluate the performance of the Los Alamos Sea Ice Model (CICE) to simulate physical and biogeochemical properties at time scales of a few weeks and to use the model to analyze ice algal bloom dynamics in different types of ice. Ocean and atmospheric forcing data and observations of the evolution of the sea ice properties collected from 18 April to 4 June 2015, during the Norwegian young sea ICE expedition, were used to test the CICE model. Our results show the following: (i) model performance is reasonable for sea ice thickness and bulk salinity; good for vertically resolved temperature, vertically averaged Chl a concentrations, and standing stocks; and poor for vertically resolved Chl a concentrations. (ii) Improving current knowledge about nutrient exchanges, ice algal recruitment, and motion is critical to improve sea ice biogeochemical modeling. (iii) Ice algae may bloom despite some degree of basal melting. (iv) Ice algal motility driven by gradients in limiting factors is a plausible mechanism to explain their vertical distribution. (v) Different ice algal bloom and net primary production (NPP) patterns were identified in the ice types studied, suggesting that ice algal maximal growth rates will increase, while sea ice vertically integrated NPP and biomass will decrease as a result of the predictable increase in the area covered by refrozen leads in the Arctic Ocean.


Frontiers in Marine Science | 2018

Algal hot spots in a changing Arctic Ocean: Sea-ice ridges and the snow-ice interface

Mar Fernández-Méndez; Lasse Mork Olsen; Hanna M. Kauko; Amelie Meyer; Anja Rösel; Ioanna Merkouriadi; Christopher John Mundy; Jens K. Ehn; Malin Johansson; Penelope Mae Wagner; Åse Ervik; Bk Sorrell; Pedro Duarte; Anette Wold; Haakon Hop; Phillipp Assmy

During the N-ICE2015 drift expedition north-west of Svalbard, we observed the establishment and development of algal communities in first-year ice (FYI) ridges and at the snow-ice interface. Despite some indications of being hot spots for biological activity, ridges are under-studied largely because they are complex structures that are difficult to sample. Snow infiltration communities can grow at the snow-ice interface when flooded. They have been commonly observed in the Antarctic, but rarely in the Arctic, where flooding is less common mainly due to a lower snow-to-ice thickness ratio. Combining biomass measurements and algal community analysis with under-ice irradiance and current measurements as well as light modeling, we comprehensively describe these two algal habitats in an Arctic pack ice environment. High biomass accumulation in ridges was facilitated by complex surfaces for algal deposition and attachment, increased light availability, and protection against strong under-ice currents. Notably, specific locations within the ridges were found to host distinct ice algal communities. The pennate diatoms Nitzschia frigida and Navicula species dominated the underside and inclined walls of submerged ice blocks, while the centric diatom Shionodiscus bioculatus dominated the top surfaces of the submerged ice blocks. Higher light levels than those in and below the sea ice, low mesozooplankton grazing, and physical concentration likely contributed to the high algal biomass at the snow-ice interface. These snow infiltration communities were dominated by Phaeocystis pouchetii and chain-forming pelagic diatoms (Fragilariopsis oceanica and Chaetoceros gelidus). Ridges are likely to form more frequently in a thinner and more dynamic ice pack, while the predicted increase in Arctic precipitation in some regions in combination with the thinning Arctic icescape might lead to larger areas of sea ice with negative freeboard and subsequent flooding during the melt season. Therefore, these two habitats are likely to become increasingly important in the new Arctic with implications for carbon export and transfer in the ice-associated ecosystem.

Collaboration


Dive into the Lasse Mork Olsen's collaboration.

Top Co-Authors

Avatar

Hanna M. Kauko

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar

Pedro Duarte

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar

Philipp Assmy

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar

Geir Johnsen

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amelie Meyer

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar

Anja Rösel

Norwegian Polar Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge