László Demkó
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by László Demkó.
Langmuir | 2014
Harald Dermutz; Raphael R. Grüter; Anh Minh Truong; László Demkó; Janos Vörös; Tomaso Zambelli
By locally dispensing poly-L-lysine (PLL) molecules with a FluidFM onto a protein and cell resistant poly-L-lysine-graft-polyethylene glycol (PLL-g-PEG) coated substrate, the antifouling layer can be replaced under the tip aperture by the cell adhesive PLL. We used this approach for guiding the adhesion and axonal outgrowth of embryonic hippocampal neurons in situ. Cultures of hippocampal neurons were chosen because they mostly contain pyramidal neurons. The hippocampus is known to be involved in memory formation, and the stages of network development are well characterized, which is an asset to fundamental research. After fabricating diffuse PLL spots with 10-250 μm diameter, seeded hippocampal cells stick preferentially onto the spots migrating toward the spot center along the PLL gradient. Cell clusters were formed depending on the lateral size of the PLL dots and the density of seeded cells. In a second step of this protocol, the FluidFM is used to connect in situ the obtained clusters. The outgrowth of neurites, which are known to grow preferentially on adhesive substrates, is tailored by writing PLL lines. Antibody staining confirms that the outgrowing neurites are mostly axons, while the activity of the neurons is assessed by a calcium indicator, proving cell viability. The calcium signal intensity of two actively interconnected clusters showed to be correlated, corroborating the formation of vectored and polarized interconnections.
Biomaterials Science | 2015
B. R. Simona; Luca Hirt; László Demkó; Tomaso Zambelli; Janos Vörös; Martin Ehrbar; Vincent Milleret
We report that stiffness gradients facilitate infiltration of cells through otherwise cell-impermeable hydrogel interfaces. By enabling the separation of hydrogel manufacturing and cell seeding, and by improving cell colonization of additively manufactured hydrogel elements, interfacial density gradients present a promising strategy to progress in the creation of 3D tissue models.
Biointerphases | 2016
Leena Jaatinen; Eleanore Young; Jari Hyttinen; Janos Vörös; Tomaso Zambelli; László Demkó
This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Youngs modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.
RSC Advances | 2017
Harald Dermutz; Greta Thompson-Steckel; Csaba Forró; Victoria de Lange; Livie Dorwling-Carter; Janos Vörös; László Demkó
Cells in vitro behave differently if cultured in a 2D or 3D environment. In spite of the continuous progress over the recent years, methods available for realizing 3D cultures of primary neurons are still fairly complex, limited in throughput and especially limited in compatibility with other techniques like multielectrode arrays (MEAs) for recording and stimulating the network activity with high temporal precision. In this manuscript, a paper-based approach is presented using cellulose filter paper as a mobile substrate for 3D cultures of primary rat hippocampal and cortical neurons. Acting as 3D scaffolds for network development, filter membranes with different surface treatments were prepared to control network homogeneity and laser cut to change the network topology through spatial confinement. The viability of the prepared cultures was comparable to that of reference 2D cultures for over 4 weeks, and the mechanical stability of the paper substrates made it possible to transfer the cultures to MEA chips in an on-demand manner. Once the cultures were successfully transduced with a gene-encoded calcium indicator and transferred to a MEA chip, the optical and electrical signals of neuronal activity were simultaneously recorded and combined to study the different activity patterns with high spatiotemporal resolution. The high-throughput nature of the presented approach makes it a valuable tool for investigating the intimate relationship between topology and function, by studying the intrinsic parameters influencing network synchronization and signal propagation through the different activity patterns of 3D neural cultures with arbitrary topology. The developed platform provides a robust and simple alternative to existing 3D culturing technologies for neurons.
ChemPhysChem | 2018
Mathias J. Aebersold; Harald Dermutz; László Demkó; José F. Saenz Cogollo; Shiang‐Chi Lin; Conrad Burchert; Moritz Schneider; Doris Ling; Csaba Forró; Hana Han; Tomaso Zambelli; Janos Vörös
Physiological communication between neurons is dependent on the exchange of neurotransmitters at the synapses. Although this chemical signal transmission targets specific receptors and allows for subtle adaptation of the action potential, in vitro neuroscience typically relies on electrical currents and potentials to stimulate neurons. The electric stimulus is unspecific and the confinement of the stimuli within the media is technically difficult to control and introduces large artifacts in electric recordings of the activity. Here, we present a local chemical stimulation platform that resembles in vivo physiological conditions and can be used to target specific receptors of synapses. Neurotransmitters were dispensed using the force-controlled fluidic force microscope (FluidFM) nanopipette, which provides exact positioning and precise liquid delivery. We show that controlled release of the excitatory neurotransmitter glutamate induces spiking activity in primary rat hippocampal neurons, as measured by concurrent electrical and optical recordings using a microelectrode array and a calcium-sensitive dye, respectively. Furthermore, we characterized the glutamate dose response of neurons by applying stimulation pulses of glutamate with concentrations from 0 to 0.5 mm. This new stimulation approach, which combines FluidFM for gentle and precise positioning with a microelectrode array read-out, makes it possible to modulate the activity of individual neurons chemically and simultaneously record their induced activity across the entire neuronal network. The presented platform not only offers a more physiological alternative compared with electrical stimulation, but also provides the possibility to study the effects of the local application of neuromodulators and other drugs.
Biosensors and Bioelectronics | 2018
Csaba Forró; Greta Thompson-Steckel; Sean Weaver; Serge Weydert; Stephan Ihle; Harald Dermutz; Mathias J. Aebersold; Raphael Pilz; László Demkó; Janos Vörös
Theoretical and in vivo neuroscience research suggests that functional information transfer within neuronal networks is influenced by circuit architecture. Due to the dynamic complexities of the brain, it remains a challenge to test the correlation between structure and function of a defined network. Engineering controlled neuronal networks in vitro offers a way to test structural motifs; however, no method has achieved small, multi-node networks with stable, unidirectional connections. Here, we screened ten different microchannel architectures within polydimethylsiloxane (PDMS) devices to test their potential for axonal guidance. The most successful design had a 92% probability of achieving strictly unidirectional connections between nodes. Networks built from this design were cultured on multielectrode arrays and recorded on days in vitro 9, 12, 15 and 18 to investigate spontaneous and evoked bursting activity. Transfer entropy between subsequent nodes showed up to 100 times more directional flow of information compared to the control. Additionally, directed networks produced a greater amount of information flow, reinforcing the importance of directional connections in the brain being critical for reliable communication. By controlling the parameters of network formation, we minimized response variability and achieved functional, directional networks. The technique provides us with a tool to probe the spatio-temporal effects of different network motifs.
Colloids and Surfaces B: Biointerfaces | 2015
Prayanka Rajendran; Silvan Kaufmann; Janos Vörös; Marcy Zenobi-Wong; László Demkó
A sequence-specific oligonucleotide detection method based on the tail-to-tail aggregation of functionalized gold nanoparticles in the presence of target analytes is presented together with its optimization and capabilities for detection of single nucleotide polymorphisms (SNPs). In this single-step method, capture probes are freely accessible for hybridization, resulting in an improved assay performance compared to substrate-based assays. The analytes bring the nanoparticles close to each other via hybridization, causing a red shift of the nanoparticle plasmon peak detected by a spectrophotometer or CCD camera coupled to a darkfield imaging system. Optimal conditions for the assay were found to be (i) use of capture probes complementary to the target without any gap, (ii) maximum possible probe density on the gold nanoparticles, and (iii) 1M ionic strength buffer. The optimized assay has a 1 fM limit of detection and fM to 10 pM dynamic range, with detection of perfect match sequences being three orders of magnitude more sensitive than targets with single nucleotide mismatches.
Trends in Analytical Chemistry | 2016
Mathias J. Aebersold; Harald Dermutz; Csaba Forró; Serge Weydert; Greta Thompson-Steckel; Janos Vörös; László Demkó
Lab on a Chip | 2016
Vincent Martinez; Csaba Forró; Serge Weydert; Mathias J. Aebersold; Harald Dermutz; Orane Guillaume-Gentil; Tomaso Zambelli; Janos Vörös; László Demkó
Proceedings of the 19th International Conference on Miniaturized Systems for Chemistry and Life Sciences (µTAS) | 2015
Greta Thompson-Steckel; Harald Dermutz; Victoria de Lange; László Demkó; Janos Vörös