Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laszlo Frazer is active.

Publication


Featured researches published by Laszlo Frazer.


Journal of the American Chemical Society | 2015

Hybrid Germanium Iodide Perovskite Semiconductors: Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps, and Strong Nonlinear Optical Properties

Constantinos C. Stoumpos; Laszlo Frazer; Daniel J. Clark; Yong Soo Kim; Sonny H. Rhim; Arthur J. Freeman; J. B. Ketterson; Joon I. Jang; Mercouri G. Kanatzidis

The synthesis and properties of the hybrid organic/inorganic germanium perovskite compounds, AGeI3, are reported (A = Cs, organic cation). The systematic study of this reaction system led to the isolation of 6 new hybrid semiconductors. Using CsGeI3 (1) as the prototype compound, we have prepared methylammonium, CH3NH3GeI3 (2), formamidinium, HC(NH2)2GeI3 (3), acetamidinium, CH3C(NH2)2GeI3 (4), guanidinium, C(NH2)3GeI3 (5), trimethylammonium, (CH3)3NHGeI3 (6), and isopropylammonium, (CH3)2C(H)NH3GeI3 (7) analogues. The crystal structures of the compounds are classified based on their dimensionality with 1–4 forming 3D perovskite frameworks and 5–7 1D infinite chains. Compounds 1–7, with the exception of compounds 5 (centrosymmetric) and 7 (nonpolar acentric), crystallize in polar space groups. The 3D compounds have direct band gaps of 1.6 eV (1), 1.9 eV (2), 2.2 eV (3), and 2.5 eV (4), while the 1D compounds have indirect band gaps of 2.7 eV (5), 2.5 eV (6), and 2.8 eV (7). Herein, we report on the second harmonic generation (SHG) properties of the compounds, which display remarkably strong, type I phase-matchable SHG response with high laser-induced damage thresholds (up to ∼3 GW/cm(2)). The second-order nonlinear susceptibility, χS(2), was determined to be 125.3 ± 10.5 pm/V (1), (161.0 ± 14.5) pm/V (2), 143.0 ± 13.5 pm/V (3), and 57.2 ± 5.5 pm/V (4). First-principles density functional theory electronic structure calculations indicate that the large SHG response is attributed to the high density of states in the valence band due to sp-hybridization of the Ge and I orbitals, a consequence of the lone pair activation.


Angewandte Chemie | 2016

Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation

Akila C. Thenuwara; Elizabeth B. Cerkez; Samantha L. Shumlas; Nuwan H. Attanayake; Ian G. McKendry; Laszlo Frazer; Eric Borguet; Qing Kang; Richard C. Remsing; Michael L. Klein; Michael J. Zdilla; Daniel R. Strongin

We report a synthetic method to enhance the electrocatalytic activity of birnessite for the oxygen evolution reaction (OER) by intercalating Ni(2+) ions into the interlayer region. Electrocatalytic studies showed that nickel (7.7 atomic %)-intercalated birnessite exhibits an overpotential (η) of 400 mV for OER at an anodic current of 10 mA cm(-2) . This η is significantly lower than the η values for birnessite (η≈700 mV) and the active OER catalyst β-Ni(OH)2 (η≈550 mV). Molecular dynamics simulations suggest that a competition among the interactions between the nickel cation, water, and birnessite promote redox chemistry in the spatially confined interlayer region.


Langmuir | 2015

Copper-Intercalated Birnessite as a Water Oxidation Catalyst

Akila C. Thenuwara; Samantha L. Shumlas; Nuwan H. Attanayake; Elizabeth B. Cerkez; Ian G. McKendry; Laszlo Frazer; Eric Borguet; Qing Kang; Michael J. Zdilla; Jianwei Sun; Daniel R. Strongin

We report a synthetic method to increase the catalytic activity of birnessite toward water oxidation by intercalating copper in the interlayer region of the layered manganese oxide. Intercalation of copper, verified by XRD, XPS, ICP, and Raman spectroscopy, was accomplished by exposing a suspension of birnessite to a Cu(+)-bearing precursor molecule that underwent disproportionation in solution to yield Cu(0) and Cu(2+). Electrocatalytic studies showed that the Cu-modified birnessite exhibited an overpotential for water oxidation of ∼490 mV (at 10 mA/cm(2)) and a Tafel slope of 126 mV/decade compared to ∼700 mV (at 10 mA/cm(2)) and 240 mV/decade, respectively, for birnessite without copper. Impedance spectroscopy results suggested that the charge transfer resistivity of the Cu-modified sample was significantly lower than Cu-free birnessite, suggesting that Cu in the interlayer increased the conductivity of birnessite leading to an enhancement of water oxidation kinetics. Density functional theory calculations show that the intercalation of Cu(0) into a layered MnO2 model structure led to a change of the electronic properties of the material from a semiconductor to a metallic-like structure. This conclusion from computation is in general agreement with the aforementioned impedance spectroscopy results. X-ray photoelectron spectroscopy (XPS) showed that Cu(0) coexisted with Cu(2+) in the prepared Cu-modified birnessite. Control experiments using birnessite that was decorated with only Cu(2+) showed a reduction in water oxidation kinetics, further emphasizing the importance of Cu(0) for the increased activity of birnessite. The introduction of Cu(0) into the birnessite structure also increased the stability of the electrocatalyst. At a working current of 2 mA, the Cu-modified birnessite took ∼3 times longer for the overpotential for water oxdiation to increase by 100 mV compared to when Cu was not present in the birnessite.


ACS Applied Materials & Interfaces | 2017

Structure Evolution and Thermoelectric Properties of Carbonized Polydopamine Thin Films

Haoqi Li; Yaroslav V. Aulin; Laszlo Frazer; Eric Borguet; Rohit R. Kakodkar; Joseph P. Feser; Yan Chen; Ke An; Dmitriy A. Dikin; Fei Ren

Carbonization of nature-inspired polydopamine can yield thin films with high electrical conductivity. Understanding of the structure of carbonized PDA (cPDA) is therefore highly desired. In this study, neutron diffraction, Raman spectroscopy, and other techniques indicate that cPDA samples are mainly amorphous with some short-range ordering and graphite-like structure that emerges with increasing heat treatment temperature. The electrical conductivity and the Seebeck coefficient show different trends with heat treatment temperature, while the thermal conductivity remains insensitive. The largest room-temperature ZT of 2 × 10-4 was obtained on samples heat-treated at 800 °C, which is higher than that of reduced graphene oxide.


Journal of the American Chemical Society | 2017

Ferroelectric Polarization and Second Harmonic Generation in Supramolecular Cocrystals with Two Axes of Charge-Transfer

Ashwin Narayanan; Dennis Cao; Laszlo Frazer; Alok S. Tayi; Anthea K. Blackburn; Andrew C.-H. Sue; J. B. Ketterson; J. Fraser Stoddart; Samuel I. Stupp

Ferroelectricity in organic materials remains a subject of great interest, given its potential impact as lightweight information storage media. Here we report supramolecular charge-transfer cocrystals formed by electron acceptor and donor molecules that exhibit ferroelectric behavior along two distinct crystallographic axes. The solid-state superstructure of the cocrystals reveals that a 2:1 ratio of acceptor to donor molecules assemble into nearly orthogonal mixed stacks in which the molecules are positioned for charge-transfer in face-to-face and edge-to-face orientations, held together by an extended hydrogen-bonding network. Polarization hysteresis was observed along the face-to-face and edge-to-face axes at room temperature. The noncentrosymmetric nature of the cocrystals, required to observe ferroelectric behavior, is demonstrated using second harmonic generation measurements. This finding suggests the possibility of designing supramolecular arrays in which organic molecules support multidimensional information storage.


Nature Chemistry | 2018

Endothermic singlet fission is hindered by excimer formation

Cameron B. Dover; Joseph K. Gallaher; Laszlo Frazer; Patrick C. Tapping; Anthony J. Petty; Maxwell J. Crossley; John E. Anthony; Tak W. Kee; Timothy W. Schmidt

Singlet fission is a process whereby two triplet excitons can be produced from one photon, potentially increasing the efficiency of photovoltaic devices. Endothermic singlet fission is desired for a maximum energy-conversion efficiency, and such systems have been considered to form an excimer-like state with multiexcitonic character prior to the appearance of triplets. However, the role of the excimer as an intermediate has, until now, been unclear. Here we show, using 5,12-bis((triisopropylsilyl)ethynyl)tetracene in solution as a prototypical example, that, rather than acting as an intermediate, the excimer serves to trap excited states to the detriment of singlet-fission yield. We clearly demonstrate that singlet fission and its conjugate process, triplet-triplet annihilation, occur at a longer intermolecular distance than an excimer intermediate would impute. These results establish that an endothermic singlet-fission material must be designed to avoid excimer formation, thus allowing singlet fission to reach its full potential in enhancing photovoltaic energy conversion.


Journal of Luminescence | 2015

Evaluation of defects in cuprous oxide through exciton luminescence imaging

Laszlo Frazer; Erik J. Lenferink; Kelvin B. Chang; Kenneth R. Poeppelmeier; Nathaniel P. Stern; J. B. Ketterson

The various decay mechanisms of excitons in cuprous oxide (Cu2O) are highly sensitive to defects which can relax selection rules. Here we report cryogenic hyperspectral imaging of exciton luminescence from cuprous oxide crystals grown via the floating zone method showing that the samples have few defects. Some locations, however, show strain splitting of the 1s orthoexciton triplet polariton luminescence. Strain is reduced by annealing. In addition, annealing causes annihilation of oxygen and copper vacancies, which leads to a negative correlation between luminescence of unlike vacancies.


Optics Letters | 2014

Third-harmonic generation in cuprous oxide: efficiency determination

Laszlo Frazer; Richard D. Schaller; Kelvin B. Chang; J. B. Ketterson; Kenneth R. Poeppelmeier

The efficiency of third-harmonic generation in cuprous oxide was measured. Intensities followed a noncubic power law that indicates nonperturbative behavior. Polarization anisotropy of the harmonic generation was demonstrated and related to the third-order susceptibility. The results will influence the understanding of harmonic generation in centrosymmetric materials and are potentially relevant to device design and the interpretation of exciton behavior.


Science and Technology of Advanced Materials | 2015

Cupric oxide inclusions in cuprous oxide crystals grown by the floating zone method

Laszlo Frazer; Kelvin B. Chang; Kenneth R. Poeppelmeier; J. B. Ketterson

Abstract Phase-pure cuprous oxide (Cu2O) crystals are difficult to grow since cupric oxide can form within the crystal as the crystal is cooled to ambient conditions. Vacancies are the solute which causes precipitation of macroscopic defects. Therefore, even when a mostly phase-pure single crystal is used as a feed rod, cupric oxide inclusions persist in the recrystallized solid. Control of the thermal profile during crystal growth, however, can improve phase-purity; a slow counter-rotation rate of the feed and seed rods results in fewer inclusions. Cupric oxide can be removed by annealing, which produces a factor of 540 ± 70 increase in phase-purity.


Physical Review B | 2014

Photoionization cross section of 1s orthoexcitons in cuprous oxide

Laszlo Frazer; Kelvin B. Chang; Kenneth R. Poeppelmeier; J. B. Ketterson

We report measurements of the attenuation of a beam of orthoexciton-polaritons by a photoionizing optical probe. Excitons were prepared in a narrow resonance by two photon absorption of a 1.016 eV, 54 ps pulsed light source in cuprous oxide (Cu2O) at 1.4 K. A collinear, 1.165 eV, 54 ps probe delayed by 119 ps was used to measure the photoionization cross section of the excitons. Two photon absorption is quadratic with respect to the intensity of the pump and leads to polariton formation. Ionization is linear with respect to the intensity of the probe. Subsequent carrier recombination is quadratic with respect to the intenisty of the probe, and is distinguished because it shifts the exciton momentum away from the polariton anticrossing; the photoionizing probe leads to a rise in phonon-linked luminescence in addition to the attenuation of polaritons. The evolution of the exciton density was determined by variably delaying the probe pulse. Using the probe irradiance and the reduction in the transmitted polariton light, a cross section of 3.9*10^(-22) m^2 was deduced for the probe frequency.

Collaboration


Dive into the Laszlo Frazer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy W. Schmidt

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Joseph K. Gallaher

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Macmillan

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Cameron B. Dover

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge