Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laszlo Gabor Harsing is active.

Publication


Featured researches published by Laszlo Gabor Harsing.


Brain Research | 2006

Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats

Angéla Benedek; Krisztina Moricz; Zsolt Juranyi; Gabor Gigler; György Lévay; Laszlo Gabor Harsing; Péter Mátyus; Gábor Szénási; Mihály Albert

BACKGROUND AND PURPOSE 2,3,5-Triphenyltetrazolium chloride (TTC) staining measures tissue viability used to evaluate infarct size. The goal of this study was to compare viability of neuronal tissue during the early phases of ischemia-reperfusion assessed either by perfusion of the brain with TTC solution transcardially, in vivo, or by staining brain slices, in vitro. METHODS The middle cerebral artery was occluded for 1 h in male SPRD rats and then reperfused for 0, 1, 4, 8, 16 and 24 h. Ischemic damage was evaluated by TTC staining, in vivo and in vitro, and by histology (Luxol Fast Blue and Fluoro-Jade staining, electron microscopy). RESULTS Core volume of tissue injury measured in vivo was large at 0 h and steadily decreased by 50% (p<0.001) up to 16 h, but substantially increased from 16 to 24 h of reperfusion. In contrast, a significant core volume appeared at 4 h only, in vitro, and gradually increased up to 24 h. Core volume was larger in vivo than in vitro at all times except at 16 h when the opposite was observed. Evans blue administered intracardially stained TTC-negative areas at 1 and 24 h. Histology covered the evolution of serious tissue injury but also demonstrated some morphologically preserved neurons in the infracted area at 24 h. CONCLUSIONS Formation of formazan from TTC can depend on both the staining method and the metabolic burden of the brain tissue causing uncertainties in the volume of ischemia-induced brain injury measured by TTC staining.


Behavioural Brain Research | 2008

Chronic mild stress generates clear depressive but ambiguous anxiety-like behaviour in rats

Hajnalka Kompagne; György Bárdos; Gábor Szénási; Istvan Gacsalyi; Laszlo Gabor Harsing; György Lévay

A 3-week chronic mild stress (CMS) protocol decreased sucrose preference of rats and increased immobility in the forced swim test. It also induced social avoidance and increased grooming, but acted as if reducing anxiety in the plus-maze. Sucrose preference and social avoidance, but not other measures of the behaviour, showed significant correlation. We conclude that CMS-induced depression-like behaviour is associated with social avoidance, a seemingly anxiety-related measure, but not with other anxiety-like traits in rats.


Life Sciences | 1992

Ibogaine antagonizes cocaine-induced locomotor stimulation in mice

Henry Sershen; Audrey Hashim; Laszlo Gabor Harsing; Abel Lajtha

Ibogaine (40 mg/kg i.p.), when given 2 hours before an acute injection of cocaine (25 mg/kg s.c.) to C57BL/6 mice, reduced the cocaine-induced locomotor stimulation. Such stimulation was also reduced in the ibogaine-treated mice when a second injection of cocaine was given 24 hr later. Thus, the reduction in locomotor activity was not just the short-term depression of locomotor activity seen after ibogaine administration. When mice were given a daily injection of cocaine for 3 days and ibogaine was given after the cocaine injection on day 3, and again on day 4, cocaine-induced locomotor activity was reduced three hours later on day 4. On days 5 and 9 of the cocaine administration, with no further ibogaine treatment ambulatory counts were still lower in the ibogaine-pretreated mice. Locomotor stimulation induced by amphetamine (10 mg/kg) was not affected by ibogaine. An acute injection of ibogaine resulted in a transient increase in turnover of dopamine, as indicated by the increase in the ratio of metabolites of the dopamine to dopamine, followed by a decrease in the metabolites in striatum and frontal cortex 24 hr later. In vivo treatment with ibogaine did not affect the binding of [3H]WIN 35,248 to the cocaine binding site in striatal tissue measured in vitro. In addition, ibogaine added in vitro had a weak affinity to the WIN 35,248 binding site (IC50 for cocaine = 120 nM and for ibogaine = 1,500 nM). The results suggest that ibogaine may have induced a selective change in the dopaminergic system that results in a decrease in responsiveness to cocaine that persisted for at least 1 week.


Neurochemical Research | 2000

Reciprocal innervation between serotonergic and GABAergic neurons in raphe nuclei of the rat.

Erzsebet Bagdy; Istvan Kiraly; Laszlo Gabor Harsing

Midbrain slices containing the dorsal and medial raphe nuclei were prepared from rat brain in order to study serotonergic-GABAergic interaction. The slices were loaded with either [3H] serotonin or [3H]GABA, superfused and the electrically induced efflux of radioactivity was determined. The GABAA receptor agonist muscimol (3 to 30 μM) and the GABAB receptor agonist baclofen (30 and 100 μM) inhibited [3H]serotonin and [3H]GABA release. These effects of muscimol were reversed by the GABAA antagonists bicuculline (100 μM). The GABAB antagonist phaclofen (100 μM) also antagonized the baclofen-induced inhibition of [3H]serotonin and [3H]GABA release. Phaclofen by itself increased [3H]serotonin release but it did not alter [3H]GABA overflow. Muscimol (10 μM) and baclofen (100 μM) also inhibited [3H]serotonin release after depletion of GABAergic neurons by isoniazid pretreatment. These findings indicate the presence of postsynaptic GABAA and GABAB receptors located on serotonergic neurons. The 5-HT1A receptor agonist 8-OH-DPAT (0.01 to 1 μM) and the 5-HT1B receptor agonist CGS-12066A (0.01 to 1 μM) inhibited the electrically stimulated [3H]serotonin and [3H]GABA release. The 5-HT1A antagonist WAY-100135 (1 μM) was without effect on [3H]serotonin and [3H]GABA efflux by itself but it reversed the 8-OH-DPAT-induced transmitter release inhibition. During KCl (22 mM)-induced depolarization, tetrodotoxin (1 μM) did not alter the inhibitory effect of CGS-12066A (1 μM) on [3H]GABA release, it did blocked, however, the ability of 8-OH-DPAT (1 μM) to reduce [3H]GABA efflux. After depletion of raphe serotonin neurons by p-chlorophenylalanine pretreatment, CGS-12066A (1 μM) still inhibited [3H]GABA release whereas in serotonin-depleted slices, 8-OH-DPAT (1 μM) was without effect on the release. We conclude that reciprocal influence exists between serotonergic projection neurons and the GABAergic interneurons or afferents in the raphe nuclei and these interactions may be mediated by 5-HT1A/B and GABAA/B receptors. Both synaptic and non-synaptic neurotransmission may be operative in the 5-HTergic-GABAergic reciprocal interaction which may serve as a local tuning in the neural connection between cerebral cortex and midbrain raphe nuclei.


Bioorganic & Medicinal Chemistry | 2000

New Non Competitive AMPA Antagonists

Gizella Abraham; Sándor Sólyom; Emese Csuzdi; Pal Berzsenyi; István Ling; Istvan Tarnawa; Tamas Hamori; István Pallagi; Katalin Horváth; Ferenc Andrasi; Gábor Kapus; Laszlo Gabor Harsing; Istvan Kiraly; Miklós Patthy; Gyula Horvath

New halogen atom substituted 2,3-benzodiazepine derivatives condensed with an azole ring on the seven membered part of the ring system of type 3 and 4 as well as 5 and 6 were synthesized. It was found that chloro-, dichloro- and bromo-substitutions in the benzene ring and additionally imidazole ring condensation on the diazepine ring can successfully substitute the methylenedioxy group in the well known molecules GYKI 52466 (1) and GYKI 53773 (2) and the 3-acetyl-4-methyl structural feature in 2, respectively, preserving the highly active AMPA antagonist characteristic of the original molecules. From the most active compounds (3b,i) 3b (GYKI 47261) was chosen for detailed investigations. 3b revealed an excellent, broad spectrum anticonvulsant activity against seizures evoked by electroshock and different chemoconvulsive agents indicating a possible antiepileptic efficacy. 3b was found to be highly active in a transient model of focal ischemia predictive of a therapeutic value in human stroke. 3b also reversed the dopamine depleting effect of MPTP and antagonized the oxotremorine induced tremor in mice indicating a potential antiparkinson activity.


Current Opinion in Pharmacology | 2003

Brain plasticity and pathology in psychiatric disease: Sites of action for potential therapy

Michael Spedding; Isabelle Neau; Laszlo Gabor Harsing

Recent advances have been made in understanding the changes in neuronal plasticity in psychiatric disease at the molecular level (changes in neurotransmission, long-term potentiation, long-term depression, glutamate receptors, synaptic strength and neurotrophic support) and the systems level (changes in hippocampal, frontal and amygdala function in health and disease and the impact of stress on the hippocampal/frontal axis), as well as in the impact of drugs and sites of action for therapeutic intervention. Drugs acting on plasticity could affect the abnormal set point in psychiatric disease, resulting in treatment of the disease rather than just the symptoms.


Brain Research Bulletin | 1998

Feedback stimulation of somatodendritic serotonin release: a 5-HT3 receptor-mediated effect in the raphe nuclei of the rat.

Erzsebet Bagdy; Sándor Sólyom; Laszlo Gabor Harsing

Slices from rat midbrain containing the raphe nuclei and from hippocampus were prepared, loaded with [3H]5-HT and superfused and the resting and the electrically stimulated [3H]5-HT release was measured. The 5-HT3 receptor agonist 2-methyl-5-HT (1 to 10 micromol/l) increased the resting tritium outflow in superfused raphe nuclei slices, EC50 5.3 micromol/l. The 2-methyl-5-HT-induced increase of tritium outflow was an external Ca2+-independent process and was not altered by reserpine pretreatment but it was reversed by addition of the 5-HT uptake inhibitor fluoxetine (1 micromol/l). The 5-HT3 receptor antagonists ondansetron and GYKI-46 903 (1 micromol/l) did not antagonize the stimulatory effect of 2-methyl-5-HT on resting tritium outflow. 2-Methyl-5-HT in lower concentration increased the electrically induced tritium overflow from raphe nuclei slices (EC50 0.56 micromol/l) and also from hippocampal slices preloaded with [3H]5-HT. These effects were reversed by 1 micromol/l of ondansetron and GYKI-46903. The 5-HT3 receptor antagonists (1 micromol/l) were without effects on depolarization-evoked [3H]5-HT release at 2 Hz stimulation, when 10 Hz stimulation was used, ondansetron and GYKI-46 903 reduced the tritium overflow from raphe nuclei slices. These data indicate that 5-HT3 receptors positively alter depolarization-induced somatodendritic 5-HT release in the raphe nuclei. They also show that 2-methyl-5-HT is able to evoke 5-HT release not only from vesicles but also from cytoplasmic stores via a transporter-dependent exchange process.


Neurochemistry International | 2008

2,3-Benzodiazepine-type AMPA receptor antagonists and their neuroprotective effects

Gábor Szénási; Miklos Vegh; Geza Szabo; Szabolcs Kertesz; Gábor Kapus; Mihály Albert; Zoltan Greff; István Ling; Jozsef Barkoczy; Gyula Simig; Michael Spedding; Laszlo Gabor Harsing

AMPA receptors are fast ligand-gated members of glutamate receptors in neuronal and many types of non-neuronal cells. The heterotetramer complexes are assembled from four subunits (GluR1-4) in region-, development- and function-selective patterns. Each subunit contains three extracellular domains (a large amino terminal domain, an agonist-binding domain and a transducer domain), and three transmembrane segments with a loop (pore forming domain), as well as the intracellular carboxy terminal tail (traffic and conductance regulatory domain). The binding of the agonist (excitatory amino acids and their derivatives) initiates conformational realignments, which transmit to the transducer domain and membrane spanning segments to gate the channel permeable to Na+, K+ and more or less to Ca2+. Several 2,3-benzodiazepines act as non-competitive antagonists of the AMPA receptor (termed also negative allosteric modulators), which are thought to bind to the transducer domains and inhibit channel gating. Analysing their effects in vitro, it has been possible to recognize a structure-activity relationship, and to describe the critical parts of the molecules involved in their action at AMPA receptors. Blockade of AMPA receptors can protect the brain from apoptotic and necrotic cell death by preventing neuronal excitotoxicity during pathophysiological activation of glutamatergic neurons. Animal experiments provided evidence for the potential usefulness of non-competitive AMPA antagonists in the treatment of human ischemic and neurodegenerative disorders including stroke, multiple sclerosis, Parkinsons disease, periventricular leukomalacia and motoneuron disease. 2,3-benzodiazepine AMPA antagonists can protect against seizures, decrease levodopa-induced dyskinesia in animal models of Parkinsons disease demonstrating their utility for the treatment of a variety of CNS disorders.


Brain Research | 2004

Reduction of cerebral infarct size by non-competitive AMPA antagonists in rats subjected to permanent and transient focal ischemia

Éva Matucz; Krisztina Moricz; Gabor Gigler; Annamária Simó; Jozsef Barkoczy; György Lévay; Laszlo Gabor Harsing; Gábor Szénási

Antagonists of 2-amino-3(3-hydroxy-5-methyl-4-isoxazolyl) propionic acid (AMPA) receptors can considerably reduce brain damage after cerebral ischemia, but effectiveness of selective AMPA antagonists has been questioned recently. Therefore, we evaluated the antiischemic efficacy of [+/-]-7-acetyl-5-[4-aminophenyl]-7,8-dihydro-8-cyano-8-methyl-9H-1,3-dioxolo-[4,5-h]-2,3-benzodiazepine (EGIS-8332) and GYKI 53405, two selective, non-competitive AMPA antagonists in two rat models of focal cerebral ischemia. Permanent focal ischemia was produced by electrocoagulation of the middle cerebral artery (MCA). EGIS-8332 and GYKI 53405 were administered 30 min after MCA occlusion at doses of 1, 3 or 10 mg/kg i.p. In transient focal ischemia, MCA was occluded for 1 h and reperfused for 24 h using the intraluminal filament technique and the compounds were given at 3x10 mg/kg i.p. 60, 120 and 180 min following occlusion. In permanent focal ischemia, EGIS-8332 decreased the volume of cerebral infarction both at 10 mg/kg i.p. (36.4%, p<0.01) and at 3 mg/kg i.p. (26.4%, p<0.05) in a dose-dependent manner. GYKI 53405 produced a similar antiischemic effect at 10 mg/kg i.p. (36.4%, p<0.01), but it was ineffective at 3 mg/kg i.p. (6.5%, p=0.57). In transient focal ischemia, EGIS-8332 reduced the volume of necrotic brain tissue (38.7%, p<0.01) and GYKI 53405 was similarly effective (32.6%, p<0.05). Both compounds afforded neuroprotection in the cortical and subcortical regions of the MCA territory. Selective, non-competitive AMPA antagonists administered after the ischemic insult can produce effective neuroprotective action in experimental models of focal cerebral ischemia; therefore, these compounds may be useful as therapeutic agents for the treatment of stroke and neurodegenerative disorders.


British Journal of Pharmacology | 2007

Neuroprotective and anticonvulsant effects of EGIS-8332, a non-competitive AMPA receptor antagonist, in a range of animal models

Gabor Gigler; Krisztina Moricz; Marta Agoston; Annamária Simó; Mihály Albert; Angéla Benedek; Gábor Kapus; Szabolcs Kertesz; Miklos Vegh; Jozsef Barkoczy; Bernadett Marko; Geza Szabo; Éva Matucz; Istvan Gacsalyi; György Lévay; Laszlo Gabor Harsing; Gábor Szénási

Blockade of AMPA (α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid) receptors is a good treatment option for a variety of central nervous system disorders. The present study evaluated the neuroprotective and anticonvulsant effects of EGIS‐8332, a non‐competitive AMPA receptor antagonist, as a potential drug candidate.

Collaboration


Dive into the Laszlo Gabor Harsing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge